首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using conventional means of process development, it would take decades and hundreds of millions of dollars to develop technology for recycling of water and solid waste for lunar missions within the next thirty years. Since we anticipate neither that amount of time nor level of funding, new methodologies for developing life support systems (LSS) technologies are essential. Computerized modeling and simulation (CMAS) is a tool that can greatly reduce both the time and cost of technology development. By CMAS, we refer to computer methods for correlating, storing and retrieving property data for chemical species and for solving the phenomenological equations of physical/chemical processes (i.e., process conditions based on properties of materials and mass and energy balances, equipment sizing based on rate processes and the governing equations for unit operations). In particular, CMAS systems can be used to evaluate a LSS process design with minimal requirements for laboratory experimentation. A CMAS model using ASPEN PLUS is presented for a vapor compression distillation (VCD) system designed for reclaiming water from urine.  相似文献   

2.
Water vapour concentration is one of the most important, yet one of the least known quantities of the mesosphere. Knowledge of water vapour concentration is the key to understanding many mesospheric processes, including the one that is primary focus of our investigation, Polar Mesospheric Clouds (PMC). The processes of formation and occurrence parameters of PMC constitute an interesting problem in their own right, but recent evidence had been provided which suggests that PMC are a critical indicator of climate change. In this context the feasibility of a low cost method of water vapour measurements using an instrument carried aloft by a sounding rocket has been examined and some of the results discussed. It is proposed to measure the strength of the 936nm water absorption line in a solar occultation configuration employing a CCD detector. This leads to the design of a small, low cost and low-mass instrument, which can be flown on a small rocket, of the type of the Orbital Sciences Corporation Viper 5. Alternatively the instrument can be flown as a “passenger” on larger rocket carrying other experiments. In either case flight costs are relatively low. Some performance simulations are presented showing that the instrument we have designed will be sufficiently sensitive to measure water vapor in concentrations that are expected at the summer mesopause, about 85 km height. Sufficient payload design work was carried out showing that the structural, thermal and electrical requirements for a flight on the Viper 5 rocket can be met and thus making the experiment feasible for a flight.  相似文献   

3.
Water vapor is the most important greenhouse gas. It plays a major role in the dynamics of atmospheric circulation, radiation exchange within the atmosphere, and climate variability. Knowledge of the distribution of water vapor is important for understanding climate change and global warming.  相似文献   

4.
内冷却紧凑式固体除湿器实验研究   总被引:1,自引:0,他引:1  
在叉流板翅式换热器结构基础上,研发制作了一种粘贴型内冷却紧凑式固体除湿器,并对这种新型除湿器的性能进行实验研究.除湿器使用硅胶作为吸湿剂,通过导热胶将硅胶颗粒粘贴在除湿器主边的气流通道壁面上.实验分为4组,分别在高湿度和低湿度环境工况下,测试本文研制的除湿器在有内冷却和无内冷却条件下的除湿运行效果以检验内冷却气流对除湿器性能的影响.实验表明,内冷却紧凑式固体除湿器工作性能优良,在除湿器有内冷却的条件下,工作周期内除湿器的平均除湿量显著提高.在高湿度条件下,硅胶在20min内的动态吸湿率可达12.4%,高于目前已知的常压下硅胶对水蒸汽的动态吸湿率.   相似文献   

5.
针对传统机械压汽蒸馏的不足,提出分离式机械压汽蒸馏系统.建立了一套容量为1.5 m3/d的单效分离式机械压汽蒸馏系统并对其进行实验研究.实验系统主要由两套旋转蒸发器、冷凝器以及压缩机组成.通过改变压缩机转速和蒸发温度来研究系统的性能.结果表明在蒸馏水产量一定的前提下压缩机进口压力和冷凝器进口压力随着压缩机转速的增加而逐渐下降,换热温差随着压缩机转速的增加而增加,最高温差稳定在8.5℃左右.通过改变系统的真空度获得不同的蒸发温度,蒸发温度越高,蒸馏产量越高,系统性能也越好.   相似文献   

6.
Outgassing from materials as well as deliberate gaseous and liquid releases create contaminant clouds around spacecraft that can degrade both instrumentation and measurements. This paper describes a new method for estimating outgassing water vapor concentrations around space vehicles. Water vapor ions measured in the course of a rocket experiment performed at Eglin AFB, Florida, on December 12, 1980 at 2311 UT are utilized to demonstrate the technique. The H2O concentration near the payload's surface is calculated using the rate coefficient for the fast charge transfer process, O+ + H2O + H2O+ + O, the source of the observed water vapor ions. It is found that the measured H2O+ ions were produced within 3–4 cm of the sampling plate's surface and that the average H2O pressure over this distance was relatively constant on ascent at 8 × 10?6 torr, within a factor two, implying a steady outgassing rate.  相似文献   

7.
Water is an indispensable prerequisite for the existence of life. Only in an aqueous environment can biomolecules take up their native, tertiary structure and organize themselves into higher aggregates like multienzyme complexes or cell-organelles. In most of these processes interactions between biomolecules and water play an important role. The influence of pressure and temperature upon intramolecular interactions of biopolymers and biopolymer-water interactions are discussed. Because of fast hydrolysis biomolecules should be unstable at T > or = 500 K. Hydrostatic pressure leads to an accelerated hydrolysis. The p,T-dependence of hydrophobic interactions suggest an even lower upper boundary around T approximately 400 K. In the model system t-butanol/water compression weakens hydrophobic interactions. However, within the modest pressure range p < or = 120 MPa observed on earth hydrostatic pressure does not seem to limit the stability of biomolecules at temperatures below 400 K severely.  相似文献   

8.
The rainfall process of Chengdu region in autumn has obvious regional features. Especially, the night-time rain rate of this region in this season is very high in China. Studying the spatial distribution and temporal variation of regional atmospheric precipitable water vapor (PWV) is important for our understanding of water vapor related processes, such as rainfall, evaporation, convective activity, among others in this area. Since GPS detection technology has the unique characteristics, such as all-weather, high accuracy, high spatial and temporal resolution as well as low cost, tracking and monitoring techniques on water vapor has achieved rapid developments in recent years. With GPS–PWV data at 30-min interval gathered from six GPS observational stations in Chengdu region in two autumns (September 2007–December 2007 and September 2008–December 2008), it is revealed that negative correlations exist between seasonally averaged value of GPS–PWV as well as its variation amplitude and local terrain altitude. The variation of PWV in the upper atmosphere of this region results from the water vapor variation from surface to 850 hPa. With the help of Fast Fourier Transform (FFT), it is found that the autumn PWV in Chengdu region has a multi-scale feature, which includes a seasonal cycle, 22.5 days period (quasi-tri-weekly oscillation). The variation of the GPS–PWV is related to periodical change in the transmitting of the water vapor caused by zonal and meridional wind strengths’ change and to the East Asian monsoon system. According to seasonal variation characteristics, we concluded that the middle October is the critical turning point in PWV content. On a shorter time scale, the relationship between autumn PWV and ground meteorological elements was obtained using the composite analysis approach.  相似文献   

9.
Remote sounding of high cloud top temperatures by passive methods is a difficult venture due to the semitransparency of the clouds. Window channel measurements often overestimate the cloud top temperature. In this study it is experimentally shown and supported by theoretical considerations that water vapor channels, which are originally intended to sense the high tropospheric water vapor content, are more suitable than window channels. In addition, it is shown that measurements in the H2O rotational band are superior to 6.3 μm channels due to higher intensity of the outgoing radiation and less contribution by scattering by cloud particles.  相似文献   

10.
Creation of optimal sanitary–hygienic conditions is a prerequisite for good health and performance of crews on extended space missions. There is a rich assortment of associated means, methods and equipment developed and experimentally tested in orbital flights. However, over a one-year period a crew of three uses up about 800 kg of ground-supplied wet wipes and towels for personal needs. The degree of closure of life support systems for long-duration orbital flights should be maximized, particularly for interplanetary missions, which exclude any possibility of re-supply. Washing with regenerated water is the ultimate sanitary–hygienic goal. That is why it is so important to design devices for crew bathing during long-term space missions. Investigations showed that regeneration of wash water (WW) using membrane processes (reverse osmosis, nanofiltration etc.), unlike sorption, would not require much additional expendables. A two-stage membrane recovery unit eliminated >85% of permeate from real WW with organic and inorganic selectivity of 82–95%. The two-stage WW recovery unit was tested with artificial and real WW containing detergents available for space crews. Investigations into the ways of doing laundry and drying along with which detergents will be the best fit for space flight are also planned. Testing of a technology for water extraction from used textiles using a conventional period of contact of 1 s or more, showed that the humidity of the outgoing air flow neared 100%. Issues related to designing the next generation of space life support systems should consider the benefits of integrating new sanitary–hygienic technologies, equipment, and methods.  相似文献   

11.
The aim of this study is retrieving atmospheric total column water vapor (CWV) over land surfaces using a microwave radiometer (MWR) onboard the Scientific Argentine Satellite (SAC-D/Aquarius). To research this goal, a statistical algorithm is used for the purpose of filtering the study region according to the climate type.A log-linear relationship between the brightness temperatures of the MWR and CWV obtained from Global Navigation Satellite System (GNSS) measurements was used. In this statistical algorithm, the retrieved CWV is derived from the Argentinian radiometer’s brightness temperature which works at 23.8?GHz and 36.5?GHz, and taking into account CWVs observed from GNSS stations belonging to a region sharing the same climate type. We support this idea, having found a systematic effect when applying the algorithm; it was generated for one region using the previously mentioned criteria, however, it should be applied to additional regions, especially those with other climate types.The region we analyzed is in the Southeastern United States of America, where the climate type is Cfa (Köppen - Geiger classification); this climate type includes moist subtropical mid-latitude climates, with hot, muggy summers and frequent thunderstorms. However, MWR only contains measurements taken from over ocean surfaces; therefore the determination of water vapor over land is an important contribution to extend the use of the SAC-D/Aquarius radiometer measurements beyond the ocean surface. The CWVs computed by our algorithm are compared against radiosonde CWV observations and show a bias of about ?0.6?mm, a root mean square (rms) of about 6?mm and a correlation of 0.89.  相似文献   

12.
Spatial distribution of the continuum radiation in the range of 0.95–1.9 μm presumes total dust production rate of the comet of 10ρ tonne s−1 (ρ is the dust material density) and its angular distribution proportional cos . Observations of the water vapor band at 1.38 μ m reveal strong jets, their time shift from the dust jet measured in situ is consistent with gas velocity of 0.82±0.1 km s−1 and dust velocity of 0.55±0.08 km s−1. The OH vibrational-rotational bands observed are excided directly via photolysis of water vapor. Water vapor production rate deduced from the H2O band and OH band intensities is 8×1029 s−1. Intensity of the CN(0,0) band result in the CN column density of 9×1012 cm−2, i.e. larger by a factor of 3 than given by the violet band.  相似文献   

13.
The precipitable water vapor is one of the most active gases in the atmosphere which strongly affects the climate. China's second-generation polar orbit meteorological satellite FY-3A equipped with a Medium Resolution Spectral Imager (MERSI) is able to detect atmospheric water vapor. In this paper, water vapor data from AERONET, radiosonde and MODIS were used to validate the accuracy of the MERSI water vapor product in the different seasons and climatic regions of East Asia. The results show that the values of MERSI water vapor product are relatively lower than that of the other instruments and its accuracy is generally lower. The mean bias (MB) was ?0.8 to ?12.7?mm, the root mean square error (RMSE) was 2.2–17.0?mm, and the mean absolute percentage error (MAPE) varied from 31.8% to 44.1%. On the spatial variation, the accuracy of MERSI water vapor product in a descending order was from North China, West China, Japan -Korea, East China, to South China, while the seasonal variation of accuracy was the best for winter, followed by spring, then in autumn and the lowest in summer. It was found that the errors of MERSI water vapor product was mainly due to the low accuracy of radiation calibration of the MERSI absorption channel, along with the inaccurate look-up table of apparent reflectance and water vapor within the water vapor retrieved algorithm. In addition, the surface reflectance, the mixed pixels of image cloud, the humidity and temperature of atmospheric vertical profile and the haze were also found to have affected the accuracy of MERSI water vapor product.  相似文献   

14.
Miura-ori is a rigid origami structure utilized in the packaging of deployable solar panels for use in space or in the folding of maps. It's pattern can largely reduce the membrane stress and improve the work efficiency. Inspired by origami structures, we numerically and experimentally studied a scalable solar sail structure. As an improvement of the existing membrane simulations, a variable Poisson's ratio model considering the wrinkling effect of the membrane was introduced. We focused on a quadrant shape and studied how its geometry parameters and initial imperfections affect the membrane mechanical behavior. We also designed and fabricated a pantographic mechanism as an origami membrane actuator. In addition, design protocols of deployment applied to a scalable gossamer structure were proposed.  相似文献   

15.
Precipitable Water Vapor (PWV) plays an important role for weather forecasting. It is helpful in evaluating the changes of the weather system via observing the distribution of water vapor. The ability of calculating PWV from Global Positioning System (GPS) signals is useful to understand the special weather phenomenon. In this study, 95 ground-based GPS and rainfall stations in Taiwan were utilized from 2006 to 2012 to analyze the relationship between PWV and rainfall. The PWV data were classified into four classes (no, light, moderate and heavy rainfall), and the vertical gradients of the PWV were obtained and the variations of the PWV were analyzed. The results indicated that as the GPS elevation increased every 100?m, the PWV values decreased by 9.5?mm, 11.0?mm, 12.2?mm and 12.3?mm during the no, light, moderate and heavy rainfall conditions, respectively. After applying correction using the vertical gradients mentioned above, the average PWV thresholds were 41.8?mm, 52.9?mm, 62.5?mm and 64.4?mm under the no, light, moderate and heavy rainfall conditions, respectively. This study offers another type of empirical threshold to assist the rainfall prediction and can be used to distinguish the rainfall features between different areas in Taiwan.  相似文献   

16.
With the advent of the GPS navigation system, a promising ground based technique has been introduced which makes it possible to estimate the amount of water vapor in the troposphere from operational GPS networks at relatively low additional costs. While the estimation of the integrated amount is currently well established, the determination of the spatial water vapor distribution and its temporal variation are still a major challenge. To account for the vertical resolution, several tomographic approaches were pursued. We developed the software package AWATOS (atmospheric water vapor tomography software) which is based on the assimilation of double differenced GPS observations. Applying a least-squares inversion, the inhomogeneous spatial distribution of water vapor is determined. An extensive investigation has been carried out in Switzerland. GPS measurements are performed by the dense permanent Swiss national GPS network AGNES of the Swiss Federal Office of Topography (swisstopo). A total of 40 equally distributed water vapor profiles have been estimated on an hourly basis. For the purpose of validation, 22 radiosonde profiles were used at the GPS and meteorological station Payerne. Furthermore, data of the numerical weather model aLMo (alpine model in Switzerland, MeteoSwiss) were compared with the tomographic results. An overall good agreement of the three methods with an rms of better than 1.6 g/m3 absolute humidity was achieved. The results show that AGNES can be used as a dedicated network for the purpose of GPS-tomography, using a horizontal resolution of approximately 50 km and height layers of 300–500 m thickness in the lower troposphere.  相似文献   

17.
Laboratory measurements show that lichens are extremely tolerant of freezing stress and of low-temperature exposure. Metabolic activity recovered quickly after severe and extended cold treatment. Experimental results demonstrate also that CO2 exchange is already active at around −20°C. The psychrophilic character of polar lichen species is demonstrated by optimum temperatures for net photosynthesis between 0 and 15°C. In situ measurements show that lichens begin photosynthesizing below 0°C if the dry thalli receive fresh snow. The lowest temperature measured in active lichens was −17°C at a continental Antarctic site. The fine structure and the hydration state of photobiont and mycobiont cells were studied by low-temperature scanning electron microscopy (LTSEM) of frozen hydrated specimens. Water potentials of the frozen system are in the range of or even higher than those allowing dry lichens to start photosynthesis by water vapor uptake at +10°C. The great success of lichens in polar and high alpine regions gives evidence of their physiological adaptation to low temperatures. In general lichens are able to persist through glacial periods, but extended snow cover and glaciation are limiting factors.  相似文献   

18.
原子自旋陀螺仪作为目前最新一类陀螺仪,具有超高的理论精度。碱金属气室是原子自旋陀螺仪承载原子自旋的敏感表头。通过电加热使碱金属达到饱和蒸气压,但是电加热过程中会引入电磁干扰等噪声,进而影响原子自旋陀螺仪的精度和灵敏度。为减小碱金属气室加热的电磁噪声对原子自旋陀螺仪的影响,从加热器结构与加热驱动信号2个方面进行了电磁噪声抑制实验研究。设计了具有磁场噪声抑制作用的异形加热膜,使高频正弦波作为加热驱动信号,构建了碱金属气室集成化无磁电加热单元。通过实验验证,系统的等效磁场噪声优于17 fT/Hz1/2,气室内部的温度稳定度优于±0.006 ℃,为原子自旋陀螺仪的性能提升提供了可靠保障。   相似文献   

19.
The new remote sensing experiment CRISTA-NF (Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere – New Frontiers) successfully participated in the SCOUT-O3 Tropical Aircraft Campaign in November and December 2005. CRISTA-NF operated aboard the high-altitude research aircraft M-55 Geophysica. Mid-infrared spectra (4–15 μm) were measured in the limb sounding geometry with high spatial resolution (250 m vertical sampling, 5–15 km along track sampling). Measurements were carried out during transfer flights between Oberpfaffenhofen, Germany, and Darwin, Australia, as well as during several local flights near Darwin. Water vapor volume mixing ratios in the upper troposphere and lower stratosphere were derived from the CRISTA-NF radiance measurements by utilizing a rapid radiative transfer forward model and the optimal estimation retrieval approach. CRISTA-NF water vapor measurements below the hygropause have a total retrieval error of 15–40% (i.e. root mean square of accuracy and precision). The systematic terms are dominating in the retrieval error budget. The contributions of a priori information to the retrieval results are less than 5–10%. The vertical resolution of the observations is about 250–500 m when permitted by instrument sampling. In this paper we present first results for three transfer flights of the campaign. Being generally in good agreement with corresponding ECMWF operational analyzes, the CRISTA-NF measurements show significantly higher variability and local structures in the upper tropospheric water vapor distributions.  相似文献   

20.
2,2'-双(乙基二茂铁)丙烷(卡托辛)是一种综合性能优良的高效液体燃速催化剂,主要包含4种乙基取代位置不同、物理和化学性质均很相近的卡托辛同分异构体和不同取代基的双二茂铁丙烷,其中卡托辛同分异构体与其他双二茂铁丙烷很难分离。首先,采用密度泛函理论(DFT)方法模拟确定了4种同分异构体的结构,分别获得4种同分异构体的1H-NMR和13C-NMR理论谱图。其次,计算研究了合成过程中温度对产物中4种同分异构体含量的影响。最后,在理论合成条件的指导下,以高纯度乙基二茂铁和丙酮为原料、浓硫酸为催化剂,合成了卡托辛粗品。结果表明:利用惰性气体辅助蒸汽蒸馏法得到纯度大于99.0%的卡托辛同分异构体,收率高于94.0%,并通过核磁共振法确定了其结构。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号