首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Technology readiness assessments: A retrospective   总被引:1,自引:0,他引:1  
John C. Mankins   《Acta Astronautica》2009,65(9-10):1216-1223
The development of new system capabilities typically depends upon the prior success of advanced technology research and development efforts. These systems developments inevitably face the three major challenges of any project: performance, schedule and budget. Done well, advanced technology programs can substantially reduce the uncertainty in all three of these dimensions of project management. Done poorly, or not at all, and new system developments suffer from cost overruns, schedule delays and the steady erosion of initial performance objectives. It is often critical for senior management to be able to determine which of these two paths is more likely—and to respond accordingly. The challenge for system and technology managers is to be able to make clear, well-documented assessments of technology readiness and risks, and to do so at key points in the life cycle of the program.In the mid 1970s, the National Aeronautics and Space Administration (NASA) introduced the concept of “technology readiness levels” (TRLs) as a discipline-independent, programmatic figure of merit (FOM) to allow more effective assessment of, and communication regarding the maturity of new technologies. In 1995, the TRL scale was further strengthened by the articulation of the first definitions of each level, along with examples (J. Mankins, Technology readiness levels, A White Paper, NASA, Washington, DC, 1995. [1]). Since then, TRLs have been embraced by the U.S. Congress’ General Accountability Office (GAO), adopted by the U.S. Department of Defense (DOD), and are being considered for use by numerous other organizations. Overall, the TRLs have proved to be highly effective in communicating the status of new technologies among sometimes diverse organizations.This paper will review the concept of “technology readiness assessments”, and provide a retrospective on the history of “TRLs” during the past 30 years. The paper will conclude with observations concerning prospective future directions for the important discipline of technology readiness assessments.  相似文献   

2.
John C. Mankins   《Acta Astronautica》2009,65(9-10):1190-1195
The current emphasis in the US and internationally on lunar robotic missions is generally viewed as a precursor to possible future human missions to the Moon. As initially framed, the implementation of high level policies such as the US Vision for Space Exploration (VSE) might have been limited to either human lunar sortie missions, or to the testing at the Moon of concepts-of-operations and systems for eventual human missions to Mars [White House, Vision for Space Exploration, Washington, DC, 14 January, 2004. [1]]. However, recently announced (December 2006) US goals go much further: these plans now place at the center of future US—and perhaps international—human spaceflight activities a long-term commitment to an outpost on the Moon.Based on available documents, a human lunar outpost could be emplaced as early as the 2020–2025 timeframe, and would involve numerous novel systems, new technologies and unique operations requirements. As such, substantial investments in research and development (R&D) will be necessary prior to, during, and following the deployment of such an outpost. It seems possible that such an outpost will be an international endeavor, not just the undertaking of a single country—and the US has actively courted partners in the VSE. However, critical questions remain concerning an international lunar outpost. What might such an outpost accomplish? To what extent will “sustainability” be built into the outpost? And, most importantly, what will be the outpost's life cycle cost (LCC)?This paper will explore these issues with a view toward informing key policy and program decisions that must be made during the next several years. The paper will (1) describe a high-level analytical model of a modest lunar outpost, (2) examine (using this model) the parametric characteristics of the outpost in terms of the three critical questions indicated above, and (3) present rough estimates of the relationships of outpost goals and “sustainability” to LCC. The paper will also consider possible outpost requirements for near-term investments in enabling research in light of experiences in past advanced technology programs.  相似文献   

3.
The paper elaborates on “ lessons learned” from two recent ESA workshops, one focussing on the role of Innovation in the competitiveness of the space sector and the second on technology and engineering aspects conducive to better, faster and cheaper space programmes. The paper focuses primarily on four major aspects, namely:
1. a) the adaptations of industrial and public organisations to the global market needs;
2. b) the understanding of the bottleneck factors limiting competitiveness;
3. c) the trends toward new system architectures and new engineering and production methods;
4. d) the understanding of the role of new technology in the future applications.

Under the pressure of market forces and the influence of many global and regional players, applications of space systems and technology are becoming more and more competitive. It is well recognised that without major effort for innovation in industrial practices, organisations, R&D, marketing and financial approaches the European space sector will stagnate and loose its competence as well as its competitiveness. It is also recognised that a programme run according to the “better, faster, cheaper” philosophy relies on much closer integration of system design, development and verification, and draws heavily on a robust and comprehensive programme of technology development, which must run in parallel and off-line with respect to flight programmes.

A company's innovation capabilities will determine its future competitive advantage (in time, cost, performance or value) and overall growth potential. Innovation must be a process that can be counted on to provide repetitive, sustainable, long-term performance improvements. As such, it needs not depend on great breakthroughs in technology and concepts (which are accidental and rare). Rather, it could be based on bold evolution through the establishment of know-how, application of best practices, process effectiveness and high standards, performance measurement, and attention to customers and professional marketing. Having a technological lead allows industry to gain a competitive advantage in performance, cost and opportunities. Instrumental to better competitiveness is an R&D effort based on the adaptation of high technology products, capable of capturing new users, increasing production, decreasing the cost and delivery time and integrating high level of intelligence, information and autonomy. New systems will have to take in to account from the start what types of technologies are being developed or are already available in other areas outside space, and design their system accordingly. The future challenge for “faster, better, cheaper” appears to concern primarily “cost-effective”, performant autonomous spacecraft, “cost-effective”, reliable launching means and intelligent data fusion technologies and robust software serving mass- market real time services, distributed via EHF bands and Internet.

In conclusion, it can be noticed that in the past few years new approaches have considerably enlarged the ways in which space missions can be implemented. They are supported by true innovations in mission concepts, system architecture, development and technologies, in particular for the development of initiatives based on multi-mission mini-satellites platforms for communication and Earth observation missions. There are also definite limits to cost cutting (such as lowering heads counts and increasing efficiency), and therefore the strategic perspective must be shifted from the present emphasis on cost-driven enhancement to revenue-driven improvements for growth. And since the product life-cycle is continuously shortening, competitiveness is linked very strongly with the capability to generate new technology products which enhance cost/benefit performance.  相似文献   


4.
Proliferation and pace of advancing technologies warrant policy and strategic decision-making. Without thinking ahead, companies can loose marketshare and countries can yield comparative advantage. The rate at which burgeoning technologies progress, however, can make it difficult for corporations and governments alike to discern or better anticipate critical junctures in technology developments. This paper presents a conceptual, multidimensional framework, the “evolutionary path”, for understanding the stages of technological development in the civil space area. The analysis draws from three case studies — communications satellites, computers, and launch vehicles — and shows how the implications and developments of new, breakthrough technologies differ from the incremental technology upgrades or the later emergence of interconnected systems and infrastructures.  相似文献   

5.
The X-38 Project forms part of the “X” prototype vehicle family developed by the United States. Its development was initiated by NASA to prepare the Crew Return Vehicle (CRV). The European participation in the X-38 Program has been significantly extended since the start of the X-38 cooperation in 1997 and is realized by ESA's “Applied Reentry Technology Program” and the German/DLR “Technologies for Future Space Transportation Systems” (TETRA) Project. European contributions to the X-38 Vehicle 201, (V-201) can be found in all technical key areas. The orbital flight and reentry with the X-38 V-201 will conclude the X-38 project in 2002.The CRV will be used from about mid-2005 as ’ambulance‘, ’lifeboat‘ or as alternate return vehicle for the crew of the International Space Station. Recognizing the very productive and mutually beneficial cooperation established on X-38, NASA and ESA have decided to continue this cooperation into the development of the operational CRV. The Phase C/D will be completed shortly after the Critical Design Review, scheduled for August 2002. The CRV production phase will start in October 2002 and will cover production of four CRV vehicles, ending in 2006.Based on the objective to identify a further evolution potential of the CRV towards a Crew Cargo Transfer Vehicle (CCTV), NASA has implemented upgrade studies in the CRV Phase C/D.  相似文献   

6.
John D. Rummel   《Acta Astronautica》2009,64(11-12):1293-1297
“Special regions” on Mars are areas designated in the COSPAR planetary protection policy as areas that may support Earth microbes inadvertently introduced to Mars, or that may have a high probability of supporting indigenous martian life. Since absolutely nothing is known about martian life, the operational definition of a special region is a place that may allow the formation and maintenance of liquid water, on or under the surface of Mars. This paper will review the special-regions concept, the implications of recent recommendations on avoiding them, and the work of the Mars science community in providing an operational definition of those areas on Mars that are “non-special.”  相似文献   

7.
K. Anflo  R. Mllerberg 《Acta Astronautica》2009,65(9-10):1238-1249
The concept of a storable liquid monopropellant blend for space applications based on ammonium dinitramide (ADN) was invented in 1997, within a co-operation between the Swedish Space Corporation (SSC) and the Swedish Defense Research Agency (FOI). The objective was to develop a propellant which has higher performance and is safer than hydrazine. The work has been performed under contract from the Swedish National Space Board and ESA. The progress of the development has been presented in several papers since 2000.ECAPS, a subsidiary of the Swedish Space Corporation was established in 2000 with the aim to develop and market the novel “high performance green propellant” (HPGP) technology for space applications. The new technology is based on several innovations and patents w.r.t. propellant formulation and thruster design, including a high temperature resistant catalyst and thrust chamber.The first flight demonstration of the HPGP propulsion system will be performed on PRISMA. PRISMA is an international technology demonstration program with Swedish Space Corporation as the Prime Contractor.This paper describes the performance, characteristics, design and verification of the HPGP propulsion system for PRISMA. Compatibility issues related to using a new propellant with COTS components is also discussed. The PRISMA mission includes two satellites in LEO orbit were the focus is on rendezvous and formation flying. One of the satellites will act as a “target” and the main spacecraft performs rendezvous and formation flying maneuvers, where the ECAPS HPGP propulsion system will provide delta-V capability.The PRISMA CDR was held in January 2007. Integration of the flight propulsion system is about to be finalized.The flight opportunity on PRISMA represents a unique opportunity to demonstrate the HPGP propulsion system in space, and thus take a significant step towards its use in future space applications. The launch of PRISMA scheduled to 2009.  相似文献   

8.
The paper concerns possible concept variants of a partially reusable Heavy-Lift Launch Vehicle derived from the advanced basic launcher (Ariane-2010) by means of substitution of the EAP Solid Rocket Boosters for a Reusable Starting Stage consisting two Liquid-propellant Reusable Fly-Back Boosters called “Bargouzin”.This paper describes the status of the presently studied RFBB concepts during its three phases.The first project phase was dedicated to feasibility expertise of liquid-rocket reusable fly-back boosters (“Baikal” type) utilization for heavy-lift space launch vehicle. The design features and main conclusions are presented.The second phase has been performed with the purpose of selection of preferable concept among the alternative ones for the future Ariane LV modernization by using RFBB instead of EAP Boosters. The main requirements, logic of work, possible configuration and conclusion are presented. Initial aerodynamic, ballistic, thermoloading, dynamic loading, trade-off and comparison analysis have been performed on these concepts.The third phase consists in performing a more detailed expertise of the chosen LV concept. This part summarizes some of the more detailed results related to flight performance, system mass, thermoprotection system, aspects of technologies, ground complex modification, comparison analyses and conclusion.  相似文献   

9.
If a detection of ETI takes place, this will in all probability be the result of either: (a) detecting and recognising a signal or other emission of ETI; or (b) the finding of an alien artifact (for instance on the Moon or other Celestial Body of our Solar System); or (c) the highly improbable event of an actual encounter. First and foremost, legal consequences regarding any of these contingencies will result from immediate consultations between nations on Earth. Understandings, memoranda and even agreements might be proposed and/or concluded. Such results within the field of terrestrial law will surely be a new branch of International Law, and particularly of International Space Law. At the same time, terrestrial nations will have to realize that any ETI will be self-determined intelligent individualities or organizations who might have their own understanding of “rules of behaviour” and thus, be legal subjects. Whether one calls such rules “law” or not: if two intelligent races—both of which have specific rules of behaviour—come into contact with each other, the basic understanding of such mutual rules will lead to a kind of “code of conduct”. This might be the starting point for a kind of Law—Metalaw—between different races in the Universe.  相似文献   

10.
Present operational space telecommunication systems are based on simultaneous availability of more than one satellite on orbit, mainly a spare satellite in addition to the operational one.Considering the costs associated to the delivery of extra flight models and to extra launchers, the question is asked whether it would not be advantageous to launch a very limited number of “overredundant” spacecraft instead of several standard satellites.The paper gives main conditions of reliability, size and redundancy concept under which an “overredundant” spacecraft could be a competitive approach to future operational systems.  相似文献   

11.
Sanjay Jayaram   《Acta Astronautica》2009,65(11-12):1804-1812
The Space Systems Research Laboratory (SSRL) at Saint Louis University is developing SLUCUBE nanosatellite as part of the space mission design program. The objective of the mission is to demonstrate space capability of high performance nanosatellite components that has been developed at SSRL for the past three years. The objective of the program is to provide extremely low-cost and rapid access to space for scientists and commercial exploitation using commercial-off-the-shelf components. SLUCUBE is a double CubeSat with dimensions 10×10×20 cm and a mass of 2 kg. This nanosatellite features suite of technology demonstration components to enlarge the capability of space mission for such class of spacecrafts. The primary mission of SLUCUBE is to test and demonstrate several enabling technologies by flying a number of university developed high performance components. This paper describes the new developed technologies by providing details of specific components developed along with the R&D efforts and laboratory facilities. A brief discussion about the student involvement and educational benefits will also be presented.  相似文献   

12.
The new-born bioscience called Nanobiology has tackled the problems of the possibility of existence of extraterrestrial life and intelligence and of biosystem distribution in the Universe, as such questions actually belong to the realm of Theoretical Biology. The central, and yet unanswered points of such science have been reinvestigated by attempting knowledge and control of the hard-to-determine nanoscale-level classical and quantum interactions, which would supposedly give mechanistic, definite answers, both informationally and energetically, to the vexing questions put by biosystems to science: is the “living state” a physically definible concept, and how to define it? Are nanoscale kinetics or even detailed mechanics involved in the origin of life? What about intelligence, consciousness and their nanophysical roots? Are “life” and “intelligence” engineerable properties, or is any Artificial Intelligence program bound to mere metaphors? Self-organization, studied at the thermodynamic and the hydrodynamic level, showed the possibility of chemical evolution from amino acids, probably of cometary and/or meteoritic origin, up to spatiotemporal organization, autopoiesis and biological evolution, but didn't explain the origins of life. Questioning the uniqueness of the earthly evolutionary chemistry is cardinal for the ETI dilemma, as from a budgetary appraisal of perspectives in bionanoscale chaotic undecidable dynamics, quantum gravity and quantum vacuum, both “living state” and “intelligence” look like nonlocal, spacetime-linked cosmic phenomena.  相似文献   

13.
Addressing the challenges of Responsive Space and mitigating the risk of schedule slippage in space programs require a thorough understanding of the various factors driving the development schedule of a space system. The present work contributes theoretical and practical results in this direction. A spacecraft is here conceived of as a technology portfolio. The characteristics of this portfolio are defined as its size (e.g., number of instruments), the technology maturity of each instrument and the resulting Technology Readiness Level (TRL) heterogeneity, and their effects on the delivery schedule of a spacecraft are investigated. Following a brief overview of the concept of R&D portfolio and its relevance to spacecraft design, a probabilistic model of the Time-to-Delivery of a spacecraft is formulated, which includes the development, Integration and Testing, and Shipping phases. The Mean-Time-To-Delivery (MTTD) of the spacecraft is quantified based on the portfolio characteristics, and it is shown that the Mean-Time-To-Delivery (MTTD) of the spacecraft and its schedule risk are significantly impacted by decreasing TRL and increasing portfolio size. Finally, the utility implications of varying the portfolio characteristics are investigated, and “portfolio maps” are provided as guides to help system designers identify appropriate portfolio characteristics when operating in a calendar-based design environment (which is the paradigm shift that space responsiveness introduces).  相似文献   

14.
This paper describes outline of the piggy-back satellite “INDEX” for demonstration of advanced satellite technologies as well as for observation of fine structure of aurora. Aurora observation will be carried out by three cameras(MAC) with a monochromatic UV filter. Electron and ion spectrum analyzer (ESA/ISA) will measure the particle phenomena together with the aurora imaging. INDEX satellite will be launched in 2002 by Japanese H2-A. The satellite is mainly controlled by the high-speed, fault-tolerant on-board RICS processor (three-voting system of SH-3). The attitude control is a compact system of three-axis stabilization. Although the size of INDEX is small (50Kg class), several newly-developed technologies are applied to the satellite system, including silicon-on-insulator devices, variable emittance radiator, solar-concentrated paddles, lithium-ion battery, and GPS receiver with all-sky antenna-coverage.  相似文献   

15.
When US President George W. Bush on 14 January 2004 announced a new US “Vision for Space Exploration”, he called for international participation in “a journey, not a race”, a call received with skepticism and concern elsewhere. But, after a slow start in implementing this directive, during 2006 NASA has increased the forward momentum of action on the program and of discussions on international cooperation in exploring “the Moon, Mars, and beyond”. There are nevertheless a number of significant top-level issues that must be addressed if a cooperative approach to human space exploration is to be pursued. These include the relationship between utilization of the ISS and the lunar exploration plans, integration of potential partners’ current and future capabilities into the exploration plans, and the evolving space-related intentions of other countries.  相似文献   

16.
Two problems were found in recent applications of TRLs in aerospace projects.One is how to accurately evaluate the readiness level of a given technology in a project using the TRL scale.The other is how to deal with the diversity(different types) of technologies involved in an aerospace project.To solve these problems,a technology readiness assessment(TRA) method based on three maturity characteristics is established,and this method is adapted according to the features of different types of technologies.The proposed method has been successfully applied to aerospace projects and enables great effectiveness and accuracy in assessing new technologies.  相似文献   

17.
Nicolas Peter   《Space Policy》2007,23(2):97-107
Science and technology (S&T) have always been at the heart of the European political construction. This started in the Cold War through a series of pan-European collaborative schemes in a panoply of different scientific fields like molecular biology and nuclear research. However, while most of these early collaborative patterns focused on intra-European cooperation, in the post-Cold War era international S&T relations have evolved to encompass a broader international dimension. The European Union is now building a diverse and robust network of cooperation with non-EU partners to become a centre of gravity in international S&T affairs. This increasing linkage between S&T and foreign policy is particularly explicit in space activities. Even though it is the newest space actor in Europe, the EU is pushing the continent to extend the scope of its partnerships with Russia and China, while at the same time modifying its relations with the traditional European partner, the USA, illustrating therefore the emergence of a distinct “EU space diplomacy”.  相似文献   

18.
The technical development trend of future launch vehicle systems is towards fully reusable systems, in order to reduce space transportation cost. However, different types of launch vehicles are feasible, as there are
• —winged two-stage systems (WTS)
• —ballistic single-stage vehicles (BSS)
• —ballistic two-stage vehicles (BTS)
The performance of those systems is compared according to the present state of the art as well as the development cost, based on the “TRANSCOST-Model”. The development costs are shown versus launch mass (GLOW) and pay-load for the three types of reusable systems mentioned above.It is shown that performance optimization and cost minimization lead to different results. It is more economic to increase the vehicle size for achieving higher performance, instead of increasing technical complexity.Finally it is described that due to the essentially lower launch cost of reusable vehicles it will be feasible to recover the development cost by an amortization charge on the launch cost. This possibility, however, would allow commercial funding of future launch vehicle developments.  相似文献   

19.
To date, NASA's “Near Earth Object Program” has discovered over 5500 comets and asteroids on trajectories that bring them within “the neighborhood” of Earth's orbit. Nearly 1000 of these objects are classified as “potentially hazardous,” passing within 0.05 astronomical units of Earth's orbit. Discovery rates of such threatening bodies increase each year. Given this multitude of threats, in addition to evidence that the planet has absorbed many impacts over its history, it is reasonable to assume that another object will strike the Earth at some point in the future. Consequently, researchers have studied and proposed several mitigation techniques for such an occurrence. This study seeks to determine how effectively the attachment of a tether and ballast mass would divert the trajectory of such threatening objects. Specifically, the study analyzes the effects over time of such a system on objects of varying orbital semimajor axis and eccentricity, using various tether lengths and ballast masses. It was determined that the technique is most effective for NEOs with high eccentricity and small semimajor axis, and that system performance increases as tether length and ballast mass increase.  相似文献   

20.
N. Brend  S. Bertrand 《Acta Astronautica》2009,65(11-12):1668-1678
This paper presents a new multidisciplinary design optimization (MDO) methodology for preliminary design of an aeroassisted orbital transfer vehicle (AOTV) performing a two-way transfer between a low-Earth “parking” orbit and a high-energy orbit. This work has been performed in the frame of Onera's CENTOR [N. Bérend, C. Jolly, F. Jouhaud, D. Lazaro, Y. Mauriot, C. Monjaret, J.M. Moschetta, M. Parlier, J.L. Pastre, Y. Servouze, J.L. Vérant, Project CENTOR: Preparing the design of future orbital transfer vehicles; IAC-07-D.2.3.07, in: 58th International Astronautical Congress, 24–28/09/2007, Hyderabad, India] project whose objective is to prepare tools and methodology for studying and designing future space transportation systems for new kinds of missions such as on-orbit servicing (OOS), payload ferrying, or in-situ observation of space-debris. Using simplified models and an appropriate low-dimension formulation for the optimization problem the method makes possible to obtain rapidly and easily a global view of the trade-off between the payload mass and the total mass. It also makes possible to discuss the feasibility of the vehicle with regard to different multidisciplinary constraints and technology hypotheses for the heat shield. This approach is illustrated by eight different AOTV design studies, considering two different missions (LEO–MEO and LEO–GEO), two different propulsion technologies (LOX-LH2 and LOX-CH4) and two different thermal protection system (TPS) characteristics. In each case, we discuss the feasibility and characteristics of the lightest vehicle carrying a prescribed 100 kg payload, and, conversely, a heavy vehicle with a prescribed 18 ton total mass, carrying the heaviest possible payload.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号