首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 484 毫秒
1.
化学物质释放人工改变电离层   总被引:4,自引:4,他引:4  
考虑中性气体在电离层高度的扩散过程和相应的电离层离子化学过程,研究了利用主动化学物质释放来改变电离层的方法,理论计算了H2O和SF6两种气体释放后电离层随时间的响应过程,结果表明,在电离层高度上气体的扩散过程非常迅速,电离层F区的电子密度有很大程度的减少,而扩散慢且化学反应快的气体对电离层的影响更大,就更加有利于电离层洞的形成。  相似文献   

2.
黄勇  程立  张方 《空间科学学报》2012,32(3):348-353
在电离层高度释放SF6气体能够显著扰动电离层.根据SF6分子在电离层中的扩散方程,同时考虑其在电离层中主要的离子化学反应,研究了SF6气体释放后电离层各粒子浓度的时空变化,计算了产生人工气辉的体发射系数和发射强度.结果表明,SF6气体在电离层高度释放后,电子和O+的密度均有大幅度下降,主要的负离子成分由电子转变成SF5-;在释放过程中,主要产生777.4 nm和135.6 nm两种气辉,且前者的气辉强度远小于后者;电离层温度对气辉的强度有很大的影响.本文的数值计算与美国IMS/SF6实验观测数据进行比较,结果近似,且通过数据比较还能准确推断出实验时当地的电离层温度.  相似文献   

3.
化学物质释放是空间物理主动试验的重要手段之一.构建了一种基于探空火箭平台的SF_6气体释放装置,其具有体积小、自重轻、对运载平台要求低等优点,当装置自身质量为6kg时可实现2 kg的SF_6气体释放.仿真计算了SF_6气体在电离层高度的扩散过程和相应的电离层离子化学过程.研究结果表明,本装置能够有效消减电离层电子密度,具有较高实用价值.  相似文献   

4.
释放不同化学物质对电离层扰动的比较   总被引:3,自引:2,他引:1  
在电离层F区释放氢(H2)、水(H2O)、二氧化碳(CO2)、六氟化硫(SF6)、三氟溴甲烷(CF3Br)、羰基镍(Ni(CO)4)可以损耗局域等离子体电子密度,形成电子空洞,电离层电子密度的改变主要取决于释放物质的气态分子与电离层之间的离子化学反应.在电离层人工主动扰动实验中,应根据发射成本和扰动效果对释放物质进行选择.通过热力学原理和有限元模拟方法计算比较了上述6种物质对电离层的扰动影响.计算结果表明,6种物质中水的气化率最低,约为19%,其余5种物质都在60%以上,选择密度小的物质,例如H2和CO2,可以有效降低发射成本.另外,扩散较慢且化学反应较快的物质,例如SF6和Ni(CO)4,能够使得电离层电子密度减少得更多,并且受扰动区域更广、持续时间更长.  相似文献   

5.
为充分研究化学物质在电离层释放的扰动效应和后期发展效果,基于化学物质在电离层的扩散模型、化学反应和电离层扩展F的控制模型,通过电离层H2O的释放,研究电子e,H2O,O+和H2O+共4种粒子的分布状态,分析点源、多源和线源释放对电离层的扰动效果,比较不同高度、不同量和不同时间释放的影响结果,模拟夜间释放后期所激发的扩展F发展差异.结果表明,H2O在电离层释放后,能有效耗散背景电子形成空洞,O+和H2O+数密度呈椭圆形分布;点源、多源和运动目标线源等不同释放方式对电离层的扰动效果不同,证实了人工影响一定形态和区域电离层的可能性;H2O释放扰动幅度,低层大于高层,白天强于夜晚,释放量越多扰动越突出;夜间化学释放能激发扩展F,并且释放量越多,激发效果越好.   相似文献   

6.
冯桃君  于钱  张凯 《空间科学学报》2022,42(6):1100-1110
原子氧135.6 nm夜气辉主要由氧离子O+与电子的辐射复合反应生成,一些星载远紫外遥感观测任务证实135.6 nm夜气辉可用于反演电离层电子密度。针对远紫外临边遥感观测反演电离层电子密度,分析了135.6 nm夜气辉辐射强度与电子密度之间的非线型前向模型,基于离散反演理论设计了从夜间135.6 nm临边观测数据反演电子密度高度分布的反演算法,算法应用最大似然估计通过迭代求解电离层参数的最佳拟合值。通过仿真计算了TIMED卫星上全球紫外成像仪GUVI观测的反演结果,验证了本反演算法的可行性。对GUVI的实际观测数据进行反演,获得了电子密度高度分布。通过与GUVI数据的电离层参数对比分析得出,本文建立的反演模型使NmF2被高估,同时使hmF2被低估。对于不同的太阳活动强度,NmF2和 hmF2的系统误差分别在10%和5%以内,能较精确地获得电离层参数。精确获得电离层电子密度信息对于提高空间天气预报及电离层模型的修正具有重要意义。   相似文献   

7.
利用二维低纬电离层-等离子体层时变理论模式,模拟太阳活动高年春分条件下垂直漂移和中性风强度改变对低纬F区电离层参量的影响.模式在所考察的磁子午面内求解等离子体输运方程,给出离子浓度和速度随纬度、高度、地方时的变化.模式计算结果显示,调整垂直漂移和中性风强度对低纬F区电离层电子浓度的影响与电离层所处磁纬、垂直漂移和中性风作用时段等有关,呈现出一些新特点.结果对分析不同条件下垂直漂移和中性风对低纬F区电离层影响具有一定的指导意义.   相似文献   

8.
在夜间电离层,气辉135.6 nm谱线主要由F层的O+和电子的辐射复合过程以及O+和O的中性复合过程激发,该谱线强度和电离层峰值电子密度Nm F2存在很强的相关性。利用夜气辉135.6 nm辐射强度与F2层峰值电子密度Nm F2的平方成正比的物理模型,建立了在不同经纬度、地方时、季节和太阳活动下均适用的反演算法。通过DMSP卫星上搭载的紫外光谱成像仪(SSUSI)实际观测的135.6 nm气辉辐射强度来反演相应时空的电离层F2层临界频率f0F2,并将其与地基测高仪探测结果做了综合对比。结果表明,在太阳活动高年(2013年),相对误差小于等于20%的数据占比93.0%,平均相对误差约为7.08%;在太阳活动低年(2017年),相对误差小于等于20%的数据占比80.8%,平均相对误差约为12.64%。最后,对该算法在太阳活动高低年的反演精度差异进行了分析。  相似文献   

9.
电离层等离子体主动释放试验研究   总被引:1,自引:1,他引:0  
等离子体主动释放试验是空间物理研究的一种主动、有效手段. 2013年4月中国科学院空间科学与应用研究中心在海南进行了中国第一次空间等离子体主动释放试验. 探空火箭在190 km高度释放了近1 kg碱金属钡, 形成一团由钡原子和钡离子组成的云团. 利用地面光学观测手段, 记录了钡云从释放初期到末期的演化全过程, 获取了钡云亮度、粒子密度、成分及扩散范围随时间的变化规律. 通过对钡云漂移的研究, 得到低纬度地区释放点处电离层的中性风场特性, 其分析结果对于研究低纬度地区电离层动力学特性具有一定指导意义.   相似文献   

10.
一种电离层物理模型及其在F1谷区形成讨论中的应用   总被引:5,自引:2,他引:5  
高铭  肖佐 《空间科学学报》1992,12(4):289-297
在电离层F区考虑了三种中性成分的4种离子(O~+、No~+、N_2~+和O_2~+),从严格的电子和离子密度连续方程出发,由中性风所满足的动力学方程和离子运动方程解出水平中性风,从而得到离子垂直漂移速度,由此建立了一种电离层的物理模式;并用此模式,针对我国中、低纬(116°E,30°N)地区,讨论了光化学作用对F_1层的影响和动力学效应在F层中的作用。着重讨论由水平中性风引起的离子垂直漂移运动对F_1谷区的影响。结果表明:在光化平衡模式下,E区明显形成。在太阳活动低年夏季可产生明显的F_1“凸缘”。但仅靠光化平衡作用不能产生深的F_1谷区,也不能解释F_2层的形成;双极扩散是F_2层形成的主要机制;中性风的因素对E层影响不大,却可以在太阳活动低年夏季产生谷深在0.05—0.1的深F_1谷区。用此模式还计算了F_1谷区日变化,结果表明:中性风影响模式能较好地反映我国中低纬地区F_1谷区变化的地域特征。  相似文献   

11.
The geomagnetic storm is a complex process of solar wind/magnetospheric origin. The variability of the ionospheric parameters increases substantially during geomagnetic storms initiated by solar disturbances. Various features of geomagnetic storm act at various altitudes in the ionosphere and neutral atmosphere. The paper deals with variability of the electron density of the ionospheric bottomside F region at every 10 km of altitude during intense geomagnetic storms with attention paid mainly to the distribution of the F1 region daytime ionisation. We have analysed all available electron density profiles from some European middle latitude stations (Chilton, Pruhonice, Ebro, Arenosillo, Athens) for 36 events that occurred in different seasons and under different levels of solar activity (1995–2003). Selected events consist of both depletion and increase of the F2 region electron density. For European higher middle and middle latitude the F1 region response to geomagnetic storm was found to be negative (decrease of electron density) independent on the storm effect on the F2 region. For lower middle latitude the F1 response is weaker and less regular. Results of the analysis also show that the maximum of the storm effect may sometimes occur below the height of the maximum of electron density (NmF2).  相似文献   

12.
不同上边界条件下的极区电离层数值模拟   总被引:1,自引:0,他引:1  
利用一维自洽的极区电离层模型,研究了沿磁力线方向不同电离层-磁层耦合条件下极区电离层的响应.此模型在110-610km的电离层空间区域内,综合求解描述极区电离层的连续性方程、动量方程和能量方程,以得到电离层数值解.研究发现,上边界条件在200 km以上的高度能显著地影响电离层参量的形态.较高的O+上行速度对应较低的F层峰值和较高的电子温度.不同边界O+上行速度对应的温度高度剖面完全不同.200km以上电子温度高度剖面不但由来自磁层的热流通量所控制,同时还受到场向O+速度的影响.对利用电离层模型研究电离层内部物理过程提出了建议.   相似文献   

13.
We have studied the topside nighttime ionosphere of the low latitude region using data obtained from DMSP F15, ROCSAT-1, KOMPSAT-1, and GUVI on the TIMED satellite for the period of 2000–2004, during which solar activity decreased from its maximum. As these satellites operated at different altitudes, we were able to discriminate altitude dependence of several key ionospheric parameters on the level of solar activity. For example, with intensifying solar activity, electron density was seen to increase more rapidly at higher altitudes than at lower altitudes, implying that the corresponding scale height also increased. The density increased without saturation at all observed altitudes when plotted against solar EUV flux instead of F10.7. The results of the present study, as compared with those of previous studies for lower altitudes, indicate that topside vertical scale height increases with altitude and that, when solar activity increases, topside vertical scale height increases more rapidly at higher altitudes than at lower altitudes. Temperature also increased more rapidly at higher altitudes than at lower altitudes as solar activity increased. In addition, the height of the F2 peak was seen to increase with increasing solar activity, along with the oxygen ion fraction measured above the F2 peak. These results confirm that the topside ionosphere rises and expands with increasing solar activity.  相似文献   

14.
We present an analysis of the ionosphere and thermosphere response to Solar Proton Events (SPE) and magnetospheric proton precipitation in January 2005, which was carried out using the model of the entire atmosphere EAGLE. The ionization rates for the considered period were acquired from the AIMOS (Atmospheric Ionization Module Osnabrück) dataset. For numerical experiments, we applied only the proton-induced ionization rates of that period, while all the other model input parameters, including the electron precipitations, corresponded to the quiet conditions. In January 2005, two major solar proton events with different energy spectra and proton fluxes occurred on January 17 and January 20. Since two geomagnetic storms and several sub-storms took place during the considered period, not only solar protons but also less energetic magnetospheric protons contributed to the calculated ionization rates. Despite the relative transparency of the thermosphere for high-energy protons, an ionospheric response to the SPE and proton precipitation from the magnetotail was obtained in numerical experiments. In the ionospheric E layer, the maximum increase in the electron concentration is localized at high latitudes, and at heights of the ionospheric F2 layer, the positive perturbations were formed in the near-equatorial region. An analysis of the model-derived results showed that changes in the ionospheric F2 layer were caused by a change in the neutral composition of the thermosphere. We found that in the recovery phase after both solar proton events and the enhancement of magnetospheric proton precipitations associated with geomagnetic disturbances, the TEC and electron density in the F region and in topside ionosphere/plasmasphere increase at low- and mid-latitudes due to an enhancement of atomic oxygen concentration. Our results demonstrate an important role of magnetospheric protons in the formation of negative F-region ionospheric storms. According to our results, the topside ionosphere/plasmasphere and bottom-side ionosphere can react to solar and magnetospheric protons both with the same sign of disturbances or in different way. The same statement is true for TEC and foF2 disturbances. Different disturbances of foF2 and TEC at high and low latitudes can be explained by topside electron temperature disturbances.  相似文献   

15.
This paper presents a new calculation of neutral gas heating by precipitating auroral electrons. It is found that the heating rate of the neutral gas is significantly lower than previous determinations below 200 km altitude. The neutral gas heating arises from the many exothermic chemical reactions that take place from the ions and excited species created by the energetic electrons. The calculations show that less than half the energy initially deposited ends up heating the neutral gases. The rest is radiated or lost in the dissociation of O2 because the O atoms do not recombine in the thermosphere. This paper also presents a new way of calculating the heating rate per ionization that can be used for efficient determination of the overall neutral gas heating for global thermosphere models. The heating rates are relatively insensitive to the neutral atmosphere when plotted against pressure rather than altitude coordinates. At high altitudes, the heating rates are sensitive to the thermal electron density and long-lived species. The calculations were performed with the Field Line Interhemispheric Plasma (FLIP) model using a 2-stream auroral electron precipitation model. The heating rate calculations in this paper differ from previous heating rate calculations in the treatment of backscattered electrons to produce better agreement with observed flux spectra. This paper shows that more realistic model auroral electron spectra can be obtained by reflecting the up going flux back to the ionosphere at the upper boundary of the model. In this case, the neutral gas heating rates are 20%–25% higher than when the backscattered flux escapes from the ionosphere.  相似文献   

16.
利用C/A码单点定位对LEO(Low Earth Orbit)卫星上的电离层延迟改正方法——"电离层比例因子法"进行了分析研究.计算的CHAMP卫星的轨道结果表明:采用电子密度峰值高度(hmF2,F2 region maximum electron density height)平均值和瞬时值计算的电离层比例因子α变化范围分别为0.3~0.4和0.2~0.65之间,两者最大差异可达0.3,相比较而言,hmF2瞬时值的结果更加合理,并且相应的大地高H方向的系统偏差要降低0.05~0.3m左右;与双频无电离层组合的普通单点定位结果相比表明该方法能较好地消除电离层一阶项所引入的H方向上的系统偏差;该方法适用的LEO卫星轨道高度范围大致在200~ 600km之间,当轨道高度超过700km时,该方法并不适用.  相似文献   

17.
In order to investigate the regular variations of the ionosphere, the least-squares harmonic estimation is applied to the time series of ionospheric electron densities derived from about five years of Global Positioning System radio occultation observations by FORMOSAT-3/COSMIC satellites. The analysis is done for different latitudes and altitudes in the region of Iran. The least-squares harmonic estimation is found to be a powerful tool for the frequency analysis of the completely unevenly spaced time series of radio occultation measurements. Although the obtained results are slightly different from the exact expected cycles (i.e. annual and diurnal components with their Fourier decompositions, and the 27-day period) due to the low horizontal resolution of radio occultation measurements, high vertical resolution of the observations enables us to detect not only the total electron content variations but also periodic patterns of electron densities at different altitudes of the ionosphere. The dominant diurnal and annual signals together with their Fourier series decompositions are obtained, which are consistent with the previous analyses on the total electron content. In the equatorial anomaly band, the annual component is weaker than its Fourier decomposition periods. In particular, the semiannual period dominates the annual component, indicating the relationship between the semiannual variation of the electron densities and the ionospheric equatorial anomaly. From detection of the phases of the components, it is revealed that the annual signal generally has its maximum value in summers at high altitudes, and in the winters at low altitudes. This is probably due to the higher [O/N2] ratios in winter than in the summer in the lower ionosphere. Furthermore, the semiannual component mostly peaks around solstices or about a month before/after them.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号