首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The NASA Discovery Deep Impact mission involves a unique experiment designed to excavate pristine materials from below the surface of comet. In July 2005, the Deep Impact (DI) spacecraft, will release a 360 kg probe that will collide with comet 9P/Tempel 1. This collision will excavate pristine materials from depth and produce a crater whose size and appearance will provide fundamental insights into the nature and physical properties of the upper 20 to 40 m. Laboratory impact experiments performed at the NASA Ames Vertical Gun Range at NASA Ames Research Center were designed to assess the range of possible outcomes for a wide range of target types and impact angles. Although all experiments were performed under terrestrial gravity, key scaling relations and processes allow first-order extrapolations to Tempel 1. If gravity-scaling relations apply (weakly bonded particulate near-surface), the DI impact could create a crater 70 m to 140 m in diameter, depending on the scaling relation applied. Smaller than expected craters can be attributed either to the effect of strength limiting crater growth or to collapse of an unstable (deep) transient crater as a result of very high porosity and compressibility. Larger then expected craters could indicate unusually low density (< 0.3 g cm−3) or backpressures from expanding vapor. Consequently, final crater size or depth may not uniquely establish the physical nature of the upper 20 m of the comet. But the observed ejecta curtain angles and crater morphology will help resolve this ambiguity. Moreover, the intensity and decay of the impact “flash” as observed from Earth, space probes, or the accompanying DI flyby instruments should provide critical data that will further resolve ambiguities.  相似文献   

2.
The engineering goal of the Deep Impact mission is to impact comet Tempel 1 on July 4, 2005, with a 370 kg active Impactor spacecraft (s/c). The impact velocity will be just over 10 km/s and is expected to excavate a crater approximately 20 m deep and 100 m wide. The Impactor s/c will be delivered to the vicinity of Tempel 1 by the Flyby s/c, which is also the key observing platform for the event. Following Impactor release, the Flyby will change course to pass the nucleus at an altitude of 500 km and at the same time slow down in order to allow approximately 800 s of observation of the impact event, ejecta plume expansion, and crater formation. Deep Impact will use the autonomous optical navigation (AutoNav) software system to guide the Impactor s/c to intercept the nucleus of Tempel 1 at a location that is illuminated and viewable from the Flyby. The Flyby s/c uses identical software to determine its comet-relative trajectory and provide the attitude determination and control system (ADCS) with the relative position information necessary to point the High Resolution Imager (HRI) and Medium Resolution Imager (MRI) instruments at the impact site during the encounter. This paper describes the Impactor s/c autonomous targeting design and the Flyby s/c autonomous tracking design, including image processing and navigation (trajectory estimation and maneuver computation). We also discuss the analysis that led to the current design, the expected system performance as compared to the key mission requirements and the sensitivity to various s/c subsystems and Tempel 1 environmental factors.  相似文献   

3.
Prior to the selection of the comet 9P/Tempel 1 as the Deep Impact mission target, the comet was not well observed. From 1999 through the present there has been an intensive world-wide observing campaign designed to obtain mission critical information about the target nucleus, including the nucleus size, albedo, rotation rate, rotation state, phase function, and the development of the dust and gas coma. The specific observing schemes used to obtain this information and the resources needed are presented here. The Deep Impact mission is unique in that part of the mission observations will rely on an Earth-based (ground and orbital) suite of complementary observations of the comet just prior to impact and in the weeks following. While the impact should result in new cometary activity, the actual physical outcome is uncertain, and the Earth-based observations must allow for a wide range of post-impact phenomena. A world-wide coordinated effort for these observations is described.  相似文献   

4.
The science payload on the Deep Impact mission includes a 1.05–4.8 μm infrared spectrometer with a spectral resolution ranging from R∼200–900. The Deep Impact IR spectrometer was designed to optimize, within engineering and cost constraints, observations of the dust, gas, and nucleus of 9P/Tempel 1. The wavelength range includes absorption and emission features from ices, silicates, organics, and many gases that are known to be, or anticipated to be, present on comets. The expected data will provide measurements at previously unseen spatial resolution before, during, and after our cratering experiment at the comet 9P/Tempel 1. This article explores the unique aspects of the Deep Impact IR spectrometer experiment, presents a range of expectations for spectral data of 9P/Tempel 1, and summarizes the specific science objectives at each phase of the mission.  相似文献   

5.
Deep Impact: A Large-Scale Active Experiment on a Cometary Nucleus   总被引:1,自引:0,他引:1  
The Deep Impact mission will provide the first data on the interior of a cometary nucleus and a comparison of those data with data on the surface. Two spacecraft, an impactor and a flyby spacecraft, will arrive at comet 9P/Tempel 1 on 4 July 2005 to create and observe the formation and final properties of a large crater that is predicted to be approximately 30-m deep with the dimensions of a football stadium. The flyby and impactor instruments will yield images and near infrared spectra (1–5 μm) of the surface at unprecedented spatial resolutions both before and after the impact of a 350-kg spacecraft at 10.2 km/s. These data will provide unique information on the structure of the nucleus near the surface and its chemical composition. They will also used to interpret the evolutionary effects on remote sensing data and will indicate how those data can be used to better constrain conditions in the early solar system.  相似文献   

6.
The Deep Impact mission revealed many properties of comet Tempel 1, a typical comet from the Jupiter family in so far as any comet can be considered typical. In addition to the properties revealed by the impact itself, numerous properties were also discovered from observations prior to the impact just because they were the types of observations that had never been made before. The impact showed that the cometary nucleus was very weak at scales from the impactor diameter (~1 m) to the crater diameter (~100 m) and suggested that the strength was low at much smaller scales as well. The impact also showed that the cometary nucleus is extremely porous and that the ice was close to the surface but below a devolatilized layer with thickness of order the impactor diameter. The ambient observations showed a huge range of topography, implying ubiquitous layering on many spatial scales, frequent (more than once a week) natural outbursts, many of them correlated with rotational phase, a nuclear surface with many features that are best interpreted as impact craters, and clear chemical heterogeneity in the outgassing from the nucleus.  相似文献   

7.
Deep Impact Mission Design   总被引:1,自引:0,他引:1  
The Deep Impact mission is designed to provide the first opportunity to probe below the surface of a comet nucleus by a high-speed impact. This requires finding a suitable comet with launch and encounter conditions that allow a meaningful scientific experiment. The overall design requires the consideration of many factors ranging from environmental characteristics of the comet (nucleus size, dust levels, etc.), to launch dates fitting within the NASA Discovery program opportunities, to launch vehicle capability for a large impactor, to the observational conditions for the two approaching spacecraft and for telescopes on Earth.  相似文献   

8.
A comprehensive observational sequence using the Deep Impact (DI) spacecraft instruments (consisting of cameras with two different focal lengths and an infrared spectrometer) will yield data that will permit characterization of the nucleus and coma of comet Tempel 1, both before and after impact by the DI Impactor. Within the constraints of the mission system, the planned data return has been optimized. A subset of the most valuable data is planned for return in near-real time to ensure that the DI mission success criteria will be met even if the spacecraft should not survive the comet’s closest approach. The remaining prime science data will be played back during the first day after the closest approach. The flight data set will include approach observations spanning the 60 days prior to encounter, pre-impact data to characterize the comet at high resolution just prior to impact, photos from the Impactor as it plunges toward the nucleus surface (including resolutions exceeding 1 m), sub-second time sampling of the impact event itself from the Flyby spacecraft, monitoring of the crater formation process and ejecta outflow for over 10 min after impact, observations of the interior of the fully formed crater at spatial resolutions down to a few meters, and high-phase lookback observations of the nucleus and coma for 60 h after closest approach. An inflight calibration data set to accurately characterize the instruments’ performance is also planned. A ground data processing pipeline is under development at Cornell University that will efficiently convert the raw flight data files into calibrated images and spectral maps as well as produce validated archival data sets for delivery to NASA’s Planetary Data System within 6 months after the Earth receipt for use by researchers world-wide.  相似文献   

9.
The Deep Impact mission will provide the highest resolution images yet of a comet nucleus. Our knowledge of the makeup and structure of cometary nuclei, and the processes shaping their surfaces, is extremely limited, thus use of the Deep Impact data to show the geological context of the cratering experiment is crucial. This article briefly discusses some of the geological issues of cometary nuclei.  相似文献   

10.
The Deep Impact mission’s Education and Public Outreach (E/PO) program brings the principles of physics relating to the properties of matter, motions and forces and transfer of energy to school-aged and public audiences. Materials and information on the project web site convey the excitement of the mission, the principles of the process of scientific inquiry and science in a personal and social perspective. Members of the E/PO team and project scientists and engineers, share their experiences in public presentations and via interviews on the web. Programs and opportunities to observe the comet before, during and after impact contribute scientific data to the mission and engage audiences in the mission, which is truly an experiment.  相似文献   

11.
A suite of three optical instruments has been developed to observe Comet 9P/Tempel 1, the impact of a dedicated impactor spacecraft, and the resulting crater formation for the Deep Impact mission. The high-resolution instrument (HRI) consists of an f/35 telescope with 10.5 m focal length, and a combined filtered CCD camera and IR spectrometer. The medium-resolution instrument (MRI) consists of an f/17.5 telescope with a 2.1 m focal length feeding a filtered CCD camera. The HRI and MRI are mounted on an instrument platform on the flyby spacecraft, along with the spacecraft star trackers and inertial reference unit. The third instrument is a simple unfiltered CCD camera with the same telescope as MRI, mounted within the impactor spacecraft. All three instruments use a Fairchild split-frame-transfer CCD with 1,024× 1,024 active pixels. The IR spectrometer is a two-prism (CaF2 and ZnSe) imaging spectrometer imaged on a Rockwell HAWAII-1R HgCdTe MWIR array. The CCDs and IR FPA are read out and digitized to 14 bits by a set of dedicated instrument electronics, one set per instrument. Each electronics box is controlled by a radiation-hard TSC695F microprocessor. Software running on the microprocessor executes imaging commands from a sequence engine on the spacecraft. Commands and telemetry are transmitted via a MIL-STD-1553 interface, while image data are transmitted to the spacecraft via a low-voltage differential signaling (LVDS) interface standard. The instruments are used as the science instruments and are used for the optical navigation of both spacecraft. This paper presents an overview of the instrument suite designs, functionality, calibration and operational considerations.  相似文献   

12.
The plasma environment of comet 67P/Churyumov-Gerasimenko, the Rosetta mission target comet, is explored over a range of heliocentric distances throughout the mission: 3.25 AU (Rosetta instruments on), 2.7 AU (Lander down), 2.0 AU, and 1.3 AU (perihelion). Because of the large range of gas production rates, we have used both a fluid-based magnetohydrodynamic (MHD) model as well as a semi-kinetic hybrid particle model to study the plasma distribution. We describe the variation in plasma environs over the mission as well as the differences between the two modeling approaches under different conditions. In addition, we present results from a field aligned, two-stream transport electron model of the suprathermal electron flux when the comet is near perihelion.  相似文献   

13.
The VIRTIS (Visual IR Thermal Imaging Spectrometer) experiment has been one of the most successful experiments built in Europe for Planetary Exploration. VIRTIS, developed in cooperation among Italy, France and Germany, has been already selected as a key experiment for 3 planetary missions: the ESA-Rosetta and Venus Express and NASA-Dawn. VIRTIS on board Rosetta and Venus Express are already producing high quality data: as far as Rosetta is concerned, the Earth-Moon system has been successfully observed during the Earth Swing-By manouver (March 2005) and furthermore, VIRTIS will collect data when Rosetta flies by Mars in February 2007 at a distance of about 200 kilometres from the planet. Data from the Rosetta mission will result in a comparison – using the same combination of sophisticated experiments – of targets that are poorly differentiated and are representative of the composition of different environment of the primordial solar system. Comets and asteroids, in fact, are in close relationship with the planetesimals, which formed from the solar nebula 4.6 billion years ago. The Rosetta mission payload is designed to obtain this information combining in situ analysis of comet material, obtained by the small lander Philae, and by a long lasting and detailed remote sensing of the comet, obtained by instrument on board the orbiting Spacecraft. The combination of remote sensing and in situ measurements will increase the scientific return of the mission. In fact, the “in situ” measurements will provide “ground-truth” for the remote sensing information, and, in turn, the locally collected data will be interpreted in the appropriate context provided by the remote sensing investigation. VIRTIS is part of the scientific payload of the Rosetta Orbiter and will detect and characterise the evolution of specific signatures – such as the typical spectral bands of minerals and molecules – arising from surface components and from materials dispersed in the coma. The identification of spectral features is a primary goal of the Rosetta mission as it will allow identification of the nature of the main constituent of the comets. Moreover, the surface thermal evolution during comet approach to sun will be also studied.  相似文献   

14.
鸟体撞击结构过程的相似律研究(英文)   总被引:2,自引:0,他引:2  
With dimensional analysis and similarity theory, the model similarity law of aircraft structures trader bird impact load is investigated. Numerical calculations by means of nonlinear dynamic software ANSYS/LS-DYNA are conducted on the finite element models constructed with different scaling factors. The influence of strain rate on the model similarity law is found to be dependent on the strain rate sensitivity of materials and scale factors. Specifically, materials that are not sensitive to strain rate obey the model similarity law in the bird impact process. The conclusions obtained are supposed to provide a theoretical basis for the experimental work of bird impact on aircraft structure.  相似文献   

15.
The well investigated size-frequency distributions (SFD) for lunar craters is used to estimate the SFD for projectiles which formed craters on terrestrial planets and on asteroids. The result shows the relative stability of these distributions during the past 4 Gyr. The derived projectile size-frequency distribution is found to be very close to the size-frequency distribution of Main-Belt asteroids as compared with the recent Spacewatch asteroid data and astronomical observations (Palomar-Leiden survey, IRAS data) as well as data from close-up imagery by space missions. It means that asteroids (or, more generally, collisionally evolved bodies) are the main component of the impactor family. Lunar crater chronology models of the authors published elsewhere are reviewed and refined by making use of refinements in the interpretation of radiometric ages and the improved lunar SFD. In this way, a unified cratering chronology model is established which can be used as a safe basis for modeling the impact chronology of other terrestrial planets, especially Mars.  相似文献   

16.
We describe the design, performance and scientific objectives of the NASA-funded ALICE instrument aboard the ESA Rosetta asteroid flyby/comet rendezvous mission. ALICE is a lightweight, low-power, and low-cost imaging spectrograph optimized for cometary far-ultraviolet (FUV) spectroscopy. It will be the first UV spectrograph to study a comet at close range. It is designed to obtain spatially-resolved spectra of Rosetta mission targets in the 700–2050 Å spectral band with a spectral resolution between 8 Å and 12 Å for extended sources that fill its ~0.05^ × 6.0^ field-of-view. ALICE employs an off-axis telescope feeding a 0.15-m normal incidence Rowland circle spectrograph with a toroidal concave holographic reflection grating. The microchannel plate detector utilizes dual solar-blind opaque photocathodes (KBr and CsI) and employs a two-dimensional delay-line readout array. The instrument is controlled by an internal microprocessor. During the prime Rosetta mission, ALICE will characterize comet 67P/Churyumov-Gerasimenko's coma, its nucleus, and nucleus/coma coupling; during cruise to the comet, ALICE will make observations of the mission's two asteroid flyby targets and of Mars, its moons, and of Earth's moon. ALICE has already successfully completed the in-flight commissioning phase and is operating well in flight. It has been characterized in flight with stellar flux calibrations, observations of the Moon during the first Earth fly-by, and observations of comet C/2002 T7 (LINEAR) in 2004 and comet 9P/Tempel 1 during the 2005 Deep Impact comet-collision observing campaign.  相似文献   

17.
The Alpha Particle X-Ray Spectrometer (APXS) is a small instrument to determine the elemental composition of a given sample. For the ESA Rosetta mission, the periodical comet 67P/Churyumov-Gerasimenko was selected as the target comet, where the lander PHILAE (after landing) will carry out in-situ observations. One of the instruments onboard is the APXS to make measurements on the landing site. The APXS science goal is to provide basic compositional data of the comet surface. As comets consist of a mixture of ice and dust, the dust component can be characterized and compared with known meteoritic compositions. Various element ratios can be used to evaluate whether chemical fractionations occurred in cometary material by comparing them with known chondritic material. To enable observations of the local environment, APXS measurements of several spots on the surface and one spot as function of temperature can be made. Repetitive measurements as function of heliocentric distance can elucidate thermal processes at work. By measuring samples that were obtained by drilling subsurface material can be analyzed. The accumulated APXS data can be used to shed light on state, evolution, and origin of 67P/Churyumov- Gerasimenko.  相似文献   

18.
The Grain Impact Analyser and Dust Accumulator (GIADA) onboard the ROSETTA mission to comet 67P/Churyumov–Gerasimenko is devoted to study the cometary dust environment. Thanks to the rendezvous configuration of the mission, GIADA will be plunged in the dust environment of the coma and will be able to explore dust flux evolution and grain dynamic properties with position and time. This will represent a unique opportunity to perform measurements on key parameters that no ground-based observation or fly-by mission is able to obtain and that no tail or coma model elaborated so far has been able to properly simulate. The coma and nucleus properties shall be, then, clarified with consequent improvement of models describing inner and outer coma evolution, but also of models about nucleus emission during different phases of its evolution. GIADA shall be capable to measure mass/size of single particles larger than about 15 μm together with momentum in the range 6.5 × 10−10 ÷ 4.0 × 10−4 kg m s−1 for velocities up to about 300 m s−1. For micron/submicron particles the cumulative mass shall be detected with sensitivity 10−10 g. These performances are suitable to provide a statistically relevant set of data about dust physical and dynamic properties in the dust environment expected for the target comet 67P/Churyumov–Gerasimenko. Pre-flight measurements and post-launch checkouts demonstrate that GIADA is behaving as expected according to the design specifications. The International GIADA Consortium (I, E, UK, F, D, USA).  相似文献   

19.
This article presents a method to adapt the lunar production function, i.e. the frequency of impacts with a given size of a formed crater as discussed by Neukum et al. (2001), to Mars. This requires to study the nature of crater-forming projectiles, the impact rate difference, and the scaling laws for the impact crater formation. These old-standing questions are reviewed, and examples for the re-calculation of the production function from the moon to Mars are given.  相似文献   

20.
Since its discovery in 1867, periodic comet 9P/Tempel 1 has been observed at 10 returns to perihelion, including all its returns since 1967. The observations for the seven apparitions beginning in 1967 have been fit with an orbit that includes only radial and transverse nongravitational accelerations that model the rocket-like thrusting introduced by the outgassing of the cometary nucleus. The successful nongravitational acceleration model did not assume any change in the comet’s ability to outgas from one apparition to the next and the outgassing was assumed to reach a maximum at perihelion. The success of this model over the 1967–2003 interval suggests that the comet’s spin axis is currently stable. Rough calculations suggest that the collision of the impactor released by the Deep Impact spacecraft will not provide a noticeable perturbation on the comet’s orbit nor will any new vent that is opened as a result of the impact provide a noticeable change in the comet’s nongravitational acceleration history. The observing geometries prior to, and during, the impact will allow extensive Earth based observations to complement the in situ observations from the impactor and flyby spacecraft.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号