共查询到20条相似文献,搜索用时 0 毫秒
1.
Richard W. Carlson Ramon Brasser Qing-Zhu Yin Mario Fischer-Gödde Liping Qin 《Space Science Reviews》2018,214(8):121
The processes of planet formation in our Solar System resulted in a final product of a small number of discreet planets and planetesimals characterized by clear compositional distinctions. A key advance on this subject was provided when nucleosynthetic isotopic variability was discovered between different meteorite groups and the terrestrial planets. This information has now been coupled with theoretical models of planetesimal growth and giant planet migration to better understand the nature of the materials accumulated into the terrestrial planets. First order conclusions include that carbonaceous chondrites appear to contribute a much smaller mass fraction to the terrestrial planets than previously suspected, that gas-driven giant planet migration could have pushed volatile-rich material into the inner Solar System, and that planetesimal formation was occurring on a sufficiently rapid time scale that global melting of asteroid-sized objects was instigated by radioactive decay of 26Al. The isotopic evidence highlights the important role of enstatite chondrites, or something with their mix of nucleosynthetic components, as feedstock for the terrestrial planets. A common degree of depletion of moderately volatile elements in the terrestrial planets points to a mechanism that can effectively separate volatile and refractory elements over a spatial scale the size of the whole inner Solar System. The large variability in iron to silicon ratios between both different meteorite groups and between the terrestrial planets suggests that mechanisms that can segregate iron metal from silicate should be given greater importance in future investigations. Such processes likely include both density separation of small grains in the nebula, but also preferential impact erosion of either the mantle or core from differentiated planets/planetesimals. The latter highlights the important role for giant impacts and collisional erosion during the late stages of planet formation. 相似文献
2.
The composition of planetesimals depends upon the epoch and the location of their formation in the solar nebula. Meteorites
produced in the hot inner nebula contain refractory compounds. Volatiles were present in icy planetesimals and cometesimals
produced in the cold outer nebula. However, the mechanism responsible for their trapping is still controversial. We argue
for a general scenario valid in all regions of the turbulent nebula where water condensed as a crystalline ice (Hersant et al., 2004). Volatiles were trapped in the form of clathrate hydrates in the continuously cooling nebula. The epoch of clathration
of a given species depends upon the temperature and the pressure required for the stability of the clathrate hydrate. The
efficiency of the mechanism depends upon the local amount of ice available. This scenario is the only one so far which proposes
a quantitative interpretation of the non detection of N2 in several comets of the Oort cloud (Iro et al., 2003). It may explain the large variation of the CO abundance observed in comets and predicts an Ar/O ratio much less than
the upper limit of 0.1 times the solar ratio estimated on C/2001 A2 (Weaver et al., 2002). Under the assumption that the amount of water ice present at 5 AU was higher than the value corresponding to the
solar O/H ratio by a factor 2.2 at least, the clathration scenario reproduces the quasi uniform enrichment with respect to
solar of the Ar, Kr, Xe, C, N and S elements measured in Jupiter by the Galileo probe. The interpretation of the non-uniform
enrichment in C, N and S in Saturn requires that ice was less abundant at 10 AU than at 5 AU so that CO and N2 were not clathrated in the feeding zone of the planet while CH4, NH3 and H2S were. As a result, the 14N/15N ratio in Saturn should be intermediate between that in Jupiter and the terrestrial ratio.
Ar and Kr should be solar while Xe should be enriched by a factor 17. The enrichments in C, N and S in Uranus and Neptune
suggest that available ice was able to form clathrates of CH4, CO and the NH3 hydrate, but not the clathrate of N2. The enrichment of oxygen by a factor 440 in Neptune inferred by Lodders and Fegley (1994) from the detection of CO in the
troposphere of the planet is higher by at least a factor 2.5 than the lower limit of O/H required for the clathration of CO
and CH4 and for the hydration of NH3. If CO detected by Encrenaz et al. (2004) in Uranus originates from the interior of the planet, the O/H ratio in the envelope must be around of order of 260
times the solar ratio, then also consistent with the trapping of detected volatiles by clathration. It is predicted that Ar
and Kr are solar in the two planets while Xe would be enriched by a factor 30 to 70. Observational tests of the validity of
the clathration scenario are proposed. 相似文献
3.
Benoit Langlais Vincent Lesur Michael E. Purucker Jack E. P. Connerney Mioara Mandea 《Space Science Reviews》2010,152(1-4):223-249
Magnetic field measurements are very valuable, as they provide constraints on the interior of the telluric planets and Moon. The Earth possesses a planetary scale magnetic field, generated in the conductive and convective outer core. This global magnetic field is superimposed on the magnetic field generated by the rocks of the crust, of induced (i.e. aligned on the current main field) or remanent (i.e. aligned on the past magnetic field). The crustal magnetic field on the Earth is very small scale, reflecting the processes (internal or external) that shaped the Earth. At spacecraft altitude, it reaches an amplitude of about 20 nT. Mars, on the contrary, lacks today a magnetic field of core origin. Instead, there is only a remanent magnetic field, which is one to two orders of magnitude larger than the terrestrial one at spacecraft altitude. The heterogeneous distribution of the Martian magnetic anomalies reflects the processes that built the Martian crust, dominated by igneous and cratering processes. These latter processes seem to be the driving ones in building the lunar magnetic field. As Mars, the Moon has no core-generated magnetic field. Crustal magnetic features are very weak, reaching only 30 nT at 30-km altitude. Their distribution is heterogeneous too, but the most intense anomalies are located at the antipodes of the largest impact basins. The picture is completed with Mercury, which seems to possess an Earth-like, global magnetic field, which however is weaker than expected. Magnetic exploration of Mercury is underway, and will possibly allow the Hermean crustal field to be characterized. This paper presents recent advances in our understanding and interpretation of the crustal magnetic field of the telluric planets and Moon. 相似文献
4.
Helmut Lammer James F. Kasting Eric Chassefière Robert E. Johnson Yuri N. Kulikov Feng Tian 《Space Science Reviews》2008,139(1-4):399-436
The origin and evolution of Venus’, Earth’s, Mars’ and Titan’s atmospheres are discussed from the time when the active young Sun arrived at the Zero-Age-Main-Sequence. We show that the high EUV flux of the young Sun, depending on the thermospheric composition, the amount of IR-coolers and the mass and size of the planet, could have been responsible that hydrostatic equilibrium was not always maintained and hydrodynamic flow and expansion of the upper atmosphere resulting in adiabatic cooling of the exobase temperature could develop. Furthermore, thermal and various nonthermal atmospheric escape processes influenced the evolution and isotope fractionation of the atmospheres and water inventories of the terrestrial planets and Saturn’s large satellite Titan efficiently. 相似文献
5.
J.-L Bertaux 《Space Science Reviews》2006,125(1-4):435-444
Some possible factors of climate changes and of long term climate evolution are discussed with regard of the three terrestrial planets, Earth, Venus and Mars. Two positive feedback mechanisms involving liquid water, i.e., the albedo mechanism and the greenhouse effect of water vapour, are described. These feedback mechanisms respond to small external forcings, such as resulting from solar or astronomical constants variability, which might thus result in large influences on climatic changes on Earth. On Venus, reactions of the atmosphere with surface minerals play an important role in the climate system, but the involved time scales are much larger. On Mars, climate is changing through variations of the polar axis inclination over time scales of ~105–106 years. Growing evidence also exists that a major climatic change happened on Mars some 3.5 to 3.8 Gigayears ago, leading to the disappearance of liquid water on the planet surface by eliminating most of the CO2 atmosphere greenhouse power. This change might be due to a large surge of the solar wind, or to atmospheric erosion by large bodies impacts. Indeed, except for their thermospheric temperature response, there is currently little evidence for an effect of long-term solar variability on the climate of Venus and Mars. This fact is possibly due to the absence of liquid water on these terrestrial planets. 相似文献
6.
Jack J. Lissauer 《Space Science Reviews》2005,116(1-2):11-24
Models of the origins of gas giant planets and ‘ice’ giant planets are discussed and related to formation theories of both
smaller objects (terrestrial planets) and larger bodies (stars). The most detailed models of planetary formation are based
upon observations of our own Solar System, of young stars and their environments, and of extrasolar planets. Stars form from
the collapse, and sometimes fragmentation, of molecular cloud cores. Terrestrial planets are formed within disks around young
stars via the accumulation of small dust grains into larger and larger bodies until the planetary orbits become well enough
separated that the configuration is stable for the lifetime of the system. Uranus and Neptune almost certainly formed via
a bottom-up (terrestrial planet-like) mechanism; such a mechanism is also the most likely origin scenario for Saturn and Jupiter. 相似文献
7.
Water content and the internal evolution of terrestrial planets and icy bodies are closely linked. The distribution of water in planetary systems is controlled by the temperature structure in the protoplanetary disk and dynamics and migration of planetesimals and planetary embryos. This results in the formation of planetesimals and planetary embryos with a great variety of compositions, water contents and degrees of oxidation. The internal evolution and especially the formation time of planetesimals relative to the timescale of radiogenic heating by short-lived 26Al decay may govern the amount of hydrous silicates and leftover rock–ice mixtures available in the late stages of their evolution. In turn, water content may affect the early internal evolution of the planetesimals and in particular metal-silicate separation processes. Moreover, water content may contribute to an increase of oxygen fugacity and thus affect the concentrations of siderophile elements within the silicate reservoirs of Solar System objects. Finally, the water content strongly influences the differentiation rate of the icy moons, controls their internal evolution and governs the alteration processes occurring in their deep interiors. 相似文献
8.
Malcolm Fridlund 《Space Science Reviews》2008,135(1-4):355-369
Since the first exoplanet was discovered more than 10 years ago, this field has developed rapidly. Currently we know of more than 200 external systems of stars and planets, apart from our own, but what has become the ‘holy grail’ of exoplanetary research is still eluding us. Here we are, of course, referring to solar systems like our own, containing a number of terrestrial or ‘rocky’ planets orbiting within the so-called ‘habitable zone’, and with giant planets such as Jupiter and Saturn—which mostly or totally consist of elements as H or He—at distance much further out from the central star. No such system have to date been discovered around anything resembling our Sun, albeit because of observational biases. Nevertheless, in order to develop the emerging science discipline of Comparative Planetology, we will have to utilize new techniques that will enable us to search for, and then study in detail such systems in an un-biased fashion. This paper describes the emerging techniques and space missions that will allow, finally, the investigation of planets capable of hosting life as we know it. 相似文献
9.
Katharina Lodders 《Space Science Reviews》2000,92(1-2):341-354
The oxygen isotope systematics in planetary and nebular matter are used to constrain the types of nebular material accreted to form a planet. The basic assumption of this model is that the mean oxygen isotopic composition of a planet is determined by the weighted mean oxygen isotopic composition of nebular matter accreted by the planet. Chondrites are taken as representatives of nebular matter. The chemical composition (which determines core size, mantle oxidation state, density, moment of inertia) of a planet results from the weighted mean compositions of the accreted nebular material, once the mass fractions of the different types of accreting matter are known. Here some results for Earth, Moon, Mars, and Vesta are discussed. The model implies that loss of volatile elements, such as alkalis and halogens, occurs during accretion and early planetary differentiation (e. g., by catastrophic impacts). The possible depletion mechanisms of moderately volatile elements are discussed. This revised version was published online in June 2006 with corrections to the Cover Date. 相似文献
10.
Jürgen Blum 《Space Science Reviews》2018,214(2):52
After 25 years of laboratory research on protoplanetary dust agglomeration, a consistent picture of the various processes that involve colliding dust aggregates has emerged. Besides sticking, bouncing and fragmentation, other effects, like, e.g., erosion or mass transfer, have now been extensively studied. Coagulation simulations consistently show that \(\upmu\mbox{m}\)-sized dust grains can grow to mm- to cm-sized aggregates before they encounter the bouncing barrier, whereas sub-\(\upmu\mbox{m}\)-sized water-ice particles can directly grow to planetesimal sizes. For siliceous materials, other processes have to be responsible for turning the dust aggregates into planetesimals. In this article, these processes are discussed, the physical properties of the emerging dusty or icy planetesimals are presented and compared to empirical evidence from within and without the Solar System. In conclusion, the formation of planetesimals by a gravitational collapse of dust “pebbles” seems the most likely. 相似文献
11.
R.-M. Bonnet 《Space Science Reviews》2006,125(1-4):431-434
12.
S. J. Weidenschilling 《Space Science Reviews》2005,116(1-2):53-66
The formation of the giant planets seems to be best explained by accretion of planetesimals to form massive cores, which in the case of Jupiter and Saturn were able to capture nebular gas. However, the timescale for accretion of such cores has been a problem. Accretion in the outer solar system differs qualitatively from planetary growth in the terrestrial region, as the larger embryo masses and lower orbital velocities make bodies more subject to gravitational scattering. The planetesimal swarm in the outer nebula may be seeded by earlier-formed large bodies scattered from the region near the nebular “snow line”. Such a seed body can experience rapid runaway growth undisturbed by competitors; the style of growth is not oligarchy, but monarchy. 相似文献
13.
The current approach to the study of the origin of life and to the search for life elsewhere is based on two assumptions.
First, life is a purely physical phenomenon closely linked to specific environmental conditions. From this, we hypothesise
that when these environmental conditions are met, life will arise and evolve. If these assumptions are valid, the search for
life elsewhere should be a matter of mapping what we know about the range of environments in which life can exist, and then
simply trying to find these environments elsewhere. Second, life can be clearly distinguished from the non-living world. While
a single feature of a living organism left in the rock record is not always sufficient to determine unequivocally whether
life was present, life often leaves multiple structural, mineralogical and chemical biomarkers that, in sum, support a conclusion
that life was present. Our understanding of the habitats that can sustain or have sustained life has grown tremendously with
the characterisation of extremophiles. In this chapter, we highlight the range of environments that are known to harbour life
on Earth, describe the environments that existed during the period of time when life originated on Earth, and compare these
habitats to the suitable environments that are found elsewhere in our solar system, where life could have arisen and evolved. 相似文献
14.
Becker R.H. Clayton R.N. Galimov E.M. Lammer H. Marty B. Pepin R.O. Wieler R. 《Space Science Reviews》2003,106(1-4):377-410
Variations in the isotopic ratios of volatile elements in different reservoirs on the terrestrial planets carry information
about processes that operated on the planets since their formation. Comparisons between primordial planetary compositions,
to the extent they can be determined, may help us understand the planetary formation process. This working group report summarizes
our knowledge of terrestrial planet volatile inventories.
This revised version was published online in August 2006 with corrections to the Cover Date. 相似文献
15.
16.
Space Science Reviews - 相似文献
17.
Yann Alibert Christoph Mordasini Olivier Mousis Willy Benz 《Space Science Reviews》2005,116(1-2):77-95
We present models of giant planet formation, taking into account migration and disk viscous evolution. We show that migration
can significantly reduce the formation timescale bringing it in good agreement with typical observed disk lifetimes. We then
present a model that produces a planet whose current location, core mass and total mass are comparable with the one of Jupiter.
For this model, we calculate the enrichments in volatiles and compare them with the one measured by the Galileo probe. We
show that our models can reproduce both the measured atmosphere enrichments and the constraints derived by Guillot et al. (2004), if we assume the accretion of planetesimals with ices/rocks ratio equal to 4, and that a substantial amount of CO2 was present in vapor phase in the solar nebula, in agreement with ISM measurements. 相似文献
18.
David P. O’Brien Andre Izidoro Seth A. Jacobson Sean N. Raymond David C. Rubie 《Space Science Reviews》2018,214(1):47
The planetary building blocks that formed in the terrestrial planet region were likely very dry, yet water is comparatively abundant on Earth. Here we review the various mechanisms proposed for the origin of water on the terrestrial planets. Various in-situ mechanisms have been suggested, which allow for the incorporation of water into the local planetesimals in the terrestrial planet region or into the planets themselves from local sources, although all of those mechanisms have difficulties. Comets have also been proposed as a source, although there may be problems fitting isotopic constraints, and the delivery efficiency is very low, such that it may be difficult to deliver even a single Earth ocean of water this way. The most promising route for water delivery is the accretion of material from beyond the snow line, similar to carbonaceous chondrites, that is scattered into the terrestrial planet region as the planets are growing. Two main scenarios are discussed in detail. First is the classical scenario in which the giant planets begin roughly in their final locations and the disk of planetesimals and embryos in the terrestrial planet region extends all the way into the outer asteroid belt region. Second is the Grand Tack scenario, where early inward and outward migration of the giant planets implants material from beyond the snow line into the asteroid belt and terrestrial planet region, where it can be accreted by the growing planets. Sufficient water is delivered to the terrestrial planets in both scenarios. While the Grand Tack scenario provides a better fit to most constraints, namely the small mass of Mars, planets may form too fast in the nominal case discussed here. This discrepancy may be reduced as a wider range of initial conditions is explored. Finally, we discuss several more recent models that may have important implications for water delivery to the terrestrial planets. 相似文献
19.
Previous calculations of the accumulation of small (∼10 km) planetesimals at ∼1 AU to form Mars-sized bodies assumed that the initial assemblage of planetesimals were all present at the outset. This is an obviously reasonable assumption in systems in which the time scale for growth time of ∼1026 g planetary bodies is long compared to estimates of the evolutionary time scale of a protosolar disk, as was the case in the pioneering work of Safronov (1969). It is now found that as a result of the preplanetary assemblage being unstable with respect to the runaway growth of the largest bodies, this is unlikely to be the case. The more realistic alternative of adding the initial planetesimals on a ∼105 year time scale is considered here, as well as the consequences of the initial planetesimals being considerably smaller than those assumed previously. It is found that although the time scale for runaway growth is now actually controlled by the availability of planetesimals, for planetesimal production time scales of ∼105 yrs, the final consequences are very similar. These calculations do show, however, that as a consequence of continuous infall during the runaway growth process, the late initial planetesimals are likely to be catastrophically disrupted by mutual collisions. For this reason, a more detailed treatment of the growth of planetesimals into planetary embryos will require a better understanding of the difficult problem of formation of the initial planetesimals themselves. This revised version was published online in June 2006 with corrections to the Cover Date. 相似文献
20.
The rapidly rotating giant planets of the outer solar system all possess strong dynamo-driven magnetic fields that carve a large cavity in the flowing magnetized solar wind. Each planet brings a unique facet to the study of planetary magnetism. Jupiter possesses the largest planetary magnetic moment, 1.55×1020 Tm3, 2×104 times larger than the terrestrial magnetic moment whose axis of symmetry is offset about 10° from the rotation axis, a tilt angle very similar to that of the Earth. Saturn has a dipole magnetic moment of 4.6×1018 Tm3 or 600 times that of the Earth, but unlike the Earth and Jupiter, the tilt of this magnetic moment is less than 1° to the rotation axis. The other two gas giants, Uranus and Neptune, have unusual magnetic fields as well, not only because of their tilts but also because of the harmonic content of their internal fields. Uranus has two anomalous tilts, of its rotation axis and of its dipole axis. Unlike the other planets, the rotation axis of Uranus is tilted 97.5° to the normal to its orbital plane. Its magnetic dipole moment of 3.9×1017 Tm3 is about 50 times the terrestrial moment with a tilt angle of close to 60° to the rotation axis of the planet. In contrast, Neptune with a more normal obliquity has a magnetic moment of 2.2×1017 Tm3 or slightly over 25 times the terrestrial moment. The tilt angle of this moment is 47°, smaller than that of Uranus but much larger than those of the Earth, Jupiter and Saturn. These two planets have such high harmonic content in their fields that the single flyby of Voyager was unable to resolve the higher degree coefficients accurately. The four gas giants have no apparent surface features that reflect the motion of the deep interior, so the magnetic field has been used to attempt to provide this information. This approach works very well at Jupiter where there is a significant tilt of the dipole and a long baseline of magnetic field measurements (Pioneer 10 to Galileo). The rotation rate is 870.536° per day corresponding to a (System III) period of 9 h 55 min 26.704 s. At Saturn, it has been much more difficult to determine the equivalent rotation period. The most probable rotation period of the interior is close to 10 h 33 min, but at this writing, the number is still uncertain. For Uranus and Neptune, the magnetic field is better suited for the determination of the planetary rotation period but the baseline is too short. While it is possible that the smaller planetary bodies of the outer solar system, too, have magnetic fields or once had, but the current missions to Vesta, Ceres and Pluto do not include magnetic measurements. 相似文献