共查询到20条相似文献,搜索用时 0 毫秒
1.
G. Rostoker S. I. Akasofu W. Baumjohann Y. Kamide R. L. McPherron 《Space Science Reviews》1988,46(1-2):93-111
This paper presents the consensus arrived at by the authors with respect to the contributions to the substorm expansive phase of direct energy input from the solar wind and from energy stored in the magnetotail which is released in a sometimes unpredictable manner. Two physical processes, neither of which can be ignored, are considered to be of importance in the dispensation of the energy input from the solar wind. One of these is the driven process in which energy, supplied from the solar wind, is directly dissipated in the ionosphere with the only clearly definable delay being due to the inductance of the magnetosphere-ionosphere system. The other is the loading-unloading process in which energy from the solar wind is first stored in the magnetotail and then is suddenly released to be deposited in the ionosphere as a consequence of external changes in the interplanetary medium or internal triggering processes. Although the driven process appears to be more dominant on a statistical basis in terms of solar wind-geomagnetic activity relationships, one or the other of the two above processes may dominate for any individual cases. Moreover, the two processes may operate simultaneously during a given phase of the substorm, e.g., the magnetotail may experience loading as the driven system increases in strength. Thus, in our approach, substorms are described in terms of physical processes which we infer to be operative in the magnetosphere and the terminology of the past (e.g., phases) is related to those inferred physical processes. The pattern of substorm development in response to changes in the interplanetary medium is presented for a canonical isolated substorm.Now at Max-Planck-Institut für Physik und Astrophysik, Institut für Extraterrestrische Physik, D-8046 Garching, F.R.G. 相似文献
2.
S. A. Grib 《Space Science Reviews》1982,32(1-2):43-48
The interaction of travelling interplanetary shock waves with the bow shock-magnetosphere system is considered. We consider the general case when the interplanetary magnetic field is oblique to the Sun-planetary axis, thus, the interplanetary shock is neither parallel nor perpendicular. We find that an ensemble of shocks are produced after the interaction for a representative range of shock Mach numbers. First, we find that the system S
+
R
–
CS
–
S
+ appears after the collision of travelling fast shock waves S
+ (Mach number M = 2 to 7) with the bow shock. Here, S
– and R
– represent the slow shock wave and slow rarefaction wave, and C represents the contact surface. It is shown that in the presence of an interplanetary field that is inclined by 45° to the radial solar wind velocity vector, the waves R
– and S
– are weak waves and, to the first degree of approximation, the situation is similar to the previously studied normal perpendicular case. The configuration, R
+
C
m
S
–
S
+ or R
+
C
m
R
–
S
+ where C
m
is the magnetopause, appears as the result of the fast shock wave's collision with the magnetopause. In this case the waves S
– and R
– are weak. The fast rarefaction wave reflected from the magnetosphere is developed similar to the case for the collision of a perpendicular shock. The shock wave intensity is varied for Mach numbers from 2 to 10. Thus, in the limits of the first approximation, the validity of the one-dimensional consideration of the nonstationary interaction of travelling interplanetary shock waves with the bow shock-magnetosphere system is proved. The appearance of the fast rarefaction wave, R
4, decreasing the pressure on the magnetosphere of the Earth after the abrupt shock-like contraction, is proved. A possible geomagnetic effect during the global perturbation of the SSC or SI+ type is discussed.An invited paper presented at STIP Workshop on Shock Waves in the Solar Corona and Interplanetary Space, 15–19 June, 1980, Smolenice, Czechoslovakia. 相似文献
3.
Electric field measurements in the solar wind,bow shock,magnetosheath, magnetopause,and magnetosphere 总被引:1,自引:0,他引:1
F. S. Mozer R. B. Torbert U. V. Fahleson C.-G. Fälthammar A. Gonfalone A. Pedersen 《Space Science Reviews》1978,22(6):791-804
Electric field measurements are reported at 11 magnetopause crossings that occurred during a single in-bound ISEE-1 satellite pass near a local time of 1030. In combination with magnetic field data, these measurements show the existence of electric field components tangential to the actual magnetopause in the frame of rest of the magnetopause on every crossing of the current carrying layers associated with the 11 magnetopause traversals. These tangential electric field components were oriented with respect to the magnetopause sheet currents such that there was an electrical power dissipation of between 30 and 110 W km-2 on 10 of the 11 crossings. These results are in agreement with requirements of reconnection theories. Histograms of the normal electric field components and of the orientation, velocity, and thickness of the current carrying layer are presented. Suggestions of the existence of a parallel electric field in the magnetosheath near the magnetopause and of propagation of large amplitude waves along the magnetopause are also made. 相似文献
4.
Magnetic turbulence at the magnetopause, a key problem for understanding the solar wind/ magnetosphere exchanges 总被引:1,自引:0,他引:1
According to ideal MHD, the magnetopause boundary should split the terrestrial environment in two disconnected domains: outside, the solar wind (including its shocked part, the magnetosheath), and inside, the magnetosphere. This view is at variance with the experimental data, which show that the magnetopause is not tight and that a net transfer of matter exists from the solar wind to the magnetosphere; it implies that the frozen-in condition must break down on the magnetopause, either over the whole boundary or at some points. In the absence of ordinary collisions, only short scale phenomena (temporal and/or spatial) can be invoked to explain this breakdown, and the best candidates in this respect appear to be the ULF magnetic fluctuations which show very strong amplitudes in the vicinity of the magnetopause boundary. It has been shown that these fluctuations are likely to originate in the magnetosheath, probably downstream of the quasi-parallel shock region, and that they can get amplified by a propagation effect when crossing the magnetopause. When studying the propagation across the magnetopause boundary, several effects are to be taken into account simultaneously to get reliable results: the magnetopause density gradient, the temperature effects, and the magnetic field rotation can be introduced while remaining in the framework of ideal MHD. In these conditions, the magnetopause amplification has been interpreted in term of Alfvén and slow resonances occurring in the layer. When, in addition, one takes the ion inertia effects into account, by the way of the Hall-MHD equations, the result appears drastically different: no resonance occurs, but a strong Alfvén wave can be trapped in the boundary between the point where it is converted from the incident wave and the point where it stops propagating back, i.e., the point where k
\|=0, which can exist thanks to the magnetic field rotation. This effect can bring about a new interpretation to the magnetopause transfers, since the Hall effect can allow reconnection near this particular point. The plasma transfer through the magnetopause could then be interpreted in terms of a reconnection mechanism directly driven by the magnetosheath turbulence, which is permanent, rather than due to any local instability of the boundary, for instance of the tearing type, which should be subject to an instability threshold and thus, as far as it exists, more sporadic. 相似文献
5.
大气边界层风速竖向相干函数实验研究 总被引:1,自引:0,他引:1
采用尖劈、格栅和粗糙元组合的被动湍流发生装置在TJ-2风洞中模拟了大气边界层流场,测量了模拟流场的平均风速剖面,湍流度剖面,湍流积分尺度和脉动风速功率谱等风场特性参数,重点分析了风速的竖向空间相干曲线。针对风速竖向空间相干曲线存在低频“掉头”的现象,给出了修正的指数衰减函数来进行拟合,完善了用传统的简化指数衰减函数来进行拟合时在低频处的不足,结果表明:笔者给出的风速竖向空间相干函数拟合效果更好。 相似文献
6.
Gilbert D. Mead 《Space Science Reviews》1967,7(2-3):158-165
Theoretical studies of a field-free plasma incident upon a magnetic dipole lead to a closed magnetosphere with two neutral points in the noon magnetic meridian, at a latitude of ± 70°–75° and a geocentric distance of approximately 10 RE. The position of the neutral points with respect to the dipole axis is not greatly affected by the angle of incidence of the solar wind. Although the field magnitude near the neutral points is only a fraction of the dipole field, the direction is seen to reverse on opposite sides of the neutral point. Near the boundary the field direction is parallel to the boundary and tends to point towards the neutral point in the Northern hemisphere. 相似文献
7.
B. Hultqvist 《Space Science Reviews》1985,42(1-2):275-294
After some introductory discussions about morphological concepts and limitations of various measurement techniques, existing
low energy plasma data, orginating primarily from the GEOS, Dynamics Explorer, and Prognoz spacecraft, is described and discussed.
The plasmasphere measurements are not included (but for some observations of plasmasphere refilling). It is finally concluded
that we are very far from a complete picture of the low-energy plasma component in the magnetosphere and that this problem
has to be given high priority in planning payloads of future space plasma physics missions. 相似文献
8.
The solar wind carves a cavity in the flow of interstellar H atoms through the solar system by charge-exchange ionization. The resulting Ly- sky pattern depends on the latitude distribution of the solar wind flux and velocity. We review how the solar wind characteristics (mass flux latitude distribution) can be retrieved from Ly- observations, yielding a new remote sensing method of solar wind studies, through UV optical measurements. 相似文献
9.
Michael D. Montgomery 《Space Science Reviews》1973,14(3-4):559-575
The properties of the solar wind including magnetic fields, plasma, and plasma waves are briefly reviewed with emphasis on conditions near and beyond the orbit of Jupiter. An extrapolation of the steady-state wind to large distances, evolution of disturbances and structure, modulation of cosmic rays, interactions with planetary bodies (bow shocks and magnetosheaths), and interactions with interstellar neutral helium and hydrogen are briefly discussed. Some comments on instrumentation requirements to observationally define the above phenomena are also included.This is one of the publications by the Science Advisory Group. 相似文献
10.
11.
12.
介绍了NF-3大型低速翼型风洞多喷嘴级联吹气侧壁边界层控制系统的结构和原理。为验证本系统的功能和性能,采用侧壁吹气方案并使用增量式PID控制算法进行气源压力的控制,对具有增升装置的GAW-1翼型进行了侧壁边界层吹除试验研究。试验结果表明:(1)使用侧壁吹气系统后翼型模型中间截面最大升力系数由2.79增加到2.84,增加幅度1.8%,且模型端面截面的升力系数与中间截面的升力系数基本上相等;(2)利用增量式PID控制算法对气源压力的精确控制较好地完成了风洞侧壁吹气功能,改善了翼型表面流动,减小了侧壁边界层对翼型试验结果的影响。 相似文献
13.
In this review, we consider the central physical aspects pertinent to the acceleration of the solar wind. Special importance is placed on the high-speed streams since the properties of these structures seem to strain the various theoretical explanations the most. Heavy emphasis is also given to the observations — particularly as to what constraints they place on the theories. We also discuss certain sporadic events such as spicules, macrospicules, X-ray bright points, and outflows seen in the EUV associated with the explosive events, jets, and coronal bullets which could be of relevance to this problem.Three theoretical concepts pertaining to the solar wind acceleration process are examined — purely thermal acceleration with and without extended heating, acceleration due to Alfvén wave pressure, and diamagnetic acceleration. Emphasis is given to how well these theories meet the constraints imposed by the observations. Diamagnetism is argued to be a powerful ingredient in solar wind theory, both in the light of observed sporatic outflows seen in the chromosphere and transition region and also because of its effectiveness in increasing the flow speed and producing strong acceleration near the Sun in line with coronal hole observations. 相似文献
14.
E. N. Parker 《Space Science Reviews》1965,4(5-6):666-708
This paper is a review of the basic theoretical dynamical properties of an atmosphere with an extended temperature strongly bound by gravity. The review begins with the historical developments leading up to the realization that the only dynamical equilibrium of an atmosphere with extended temperature is supersonic expansion. It is shown that sufficient conditions for supersonic expansion are T(r) declining asymptotically less rapidly than 1/r, or the density at the base of the corona being less than N
b
given by (40) if no energy is available except through thermal conductivity, or the temperature falling within the limits given by (18) if T N
-1 throughout the corona. Less extended temperatures lead to equilibria which are subsonic or static. The hypothetical case of a corona with no energy supply other than thermal conduction from its base is considered at some length because the equations may be solved by analytical methods and illustrate the transition from subsonic to supersonic equilibrium as the temperature becomes more extended. Comparison with the actual corona shows that the solar corona is actively heated for some distance into space by wave dissipation.The dynamical stability of the expanding atmosphere is demonstrated, and in a later section the radial propagation of acoustic and Alfvén waves through the atmosphere and wind is worked out. The calculations show that the magnetometer will probably detect waves more easily than the plasma instrument, but that both are needed to determine the mode and direction of the wave. An observer in the wind at the orbit of Earth can listen to disturbances generated in the corona near the sun and in turbulent regions in interplanetary space.The possibility that the solar corona is composed of small-scale filaments near the sun is considered. It is shown that such filamentary structure would not be seen at the orbit of Earth. It is pointed out that the expansion of a non-filamentary corona seems to lead to too high a calculated wind density at the orbit of Earth to agree with the present observations, unless T(r) is constant or increases with r. A filamentary corona, on the other hand, would give the observed wind density for declining T(r).It is shown that viscosity plays no important role in the expansion of an atmosphere either with or without a weak magnetic field. The termination of the solar wind, presumably between 10–103 AU, is discussed briefly. The interesting development here is the interplanetary L
recently observed, which may come from the interstellar neutral hydrogen drifting into the outer regions of the solar wind.Theory is at the present time concerned with the general dynamical principles which pertain to the expansion equilibrium of an atmosphere. It is to be expected that the rapid progress of direct observations of the corona and wind will soon permit more detailed studies to be carried out. It is important that the distinction between detailed empirical models and models intended to illustrate general principles be kept clearly in mind at all times.This work was supported by the National Aeronautics and Space Administration under Grant NASA-NsG-96-60. 相似文献
15.
Marcia Neugebauer 《Space Science Reviews》1975,17(2-4):221-254
This paper summarizes space probe observations relevant to the determination of the large-scale, three-dimensional structure of the solar wind and its solar cycle variations. Observations between 0.6 and 5 AU reveal very little change in the average solar-wind velocity, but a pronounced decrease in the spread of velocities about the average. The velocity changes may be accompanied by a transfer of energy from the electrons to the protons. The mass flux falls off approximately as the inverse square of distance as expected for spherically symmetric flow. Measurements of the interplanetary magnetic field show that the spiral angle is well defined over this entire range of distances, but there is some evidence that the spiral may wind up more slowly with distance from the Sun than predicted by Parker's model. The variances or noise in the field and plasma have also been measured as a function of radial distance.During the rising portion of the solar-activity cycle, the solar-wind velocity showed a pronounced positive correlation with solar latitude over the range ±7°. Several other plasma parameters which have been found generally to correlate (or anticorrelate) with velocity also showed a latitude variation; these parameters include the density, percent helium, and azimuthal flow direction. The average polarity and the north-south component of the magnetic field depend on the solar hemisphere in which the measurements are made.Dependence on the phase of the solar-activity cycle can be found in the data on the number of high speed streams, the proton density, the percent helium, and the magnetic-field strength and polarity. 相似文献
16.
In this work, the Direct Numerical Simulation(DNS) and Oil-Film Interferometry(OFI)technique are used to investigate the hypersonic boundary layer transition induced by single and double roughness elements at Mach number 5. For single roughness, the DNS results showed that both horseshoe vortices and hairpin vortices caused by shear layer instability can affect the boundary layer instability. The generation of the near-wall unstable structure is the key point of boundary layer transition behind the roughness element. At the downstream of the roughness element, the interaction between horseshoe vortices and hairpin vortices will spread in the spanwise direction.For double roughness elements, the effect of the spacing between roughness elements on the transition is studied. It is found that the case of higher spacing between roughness elements is more effective for inducing transition than the lower one. The interaction between two adjacent roughness elements can suppress the evolution of horseshoe vortices in the downstream and trigger the instability of shear layer. Thus, the transition will be suppressed accordingly. 相似文献
17.
Martin A. Lee 《Space Science Reviews》1996,78(1-2):109-116
An overview of the solar wind termination shock is presented including: its place in the heliosphere and its origin; its structure including the role of interstellar pickup ions and galactic and anomalous cosmic rays; its inferred location based on Lyman- backscatter, Voyager radio signals, and anomalous cosmic rays; its shape and movement. 相似文献
18.
Johannes Geiss 《Space Science Reviews》1982,33(1-2):201-217
Data on composition in the solar wind are summarized and compared with best estimates of abundances in the outer convective zone of the Sun. Several mechanisms of element and isotope fractionation are discussed in relation to observed abundances and their variations.The evidence available so far indicates that in addition to ion fractionation in the corona there is a separation mechanism operating at low solar altitude that affects solar wind composition. It is suggested that the systematic depletion of helium observed in the solar wind is in part caused by ion-neutral separation in the chromosphere-transition zone. Conditions for this mechanism to be effective are discussed. It is shown that ion-neutral separation is much more pronounced than ion-ion separation under these conditions. Therefore, this mechanism should fractionate elements according to the rate at which first ionization occurs. This implies that isotope fractionation by this mechanism is minor.Ion-neutral separation may be responsible for the general depletion that is observed in the slow interstream solar wind as well as in the fast streams coming out of coronal holes. However, the occurrences of very low He/H ratios are probably caused in the corona.Paper presented at the IX-th Lindau Workshop The Source Region of the Solar Wind. 相似文献
19.
A critical review of the interstellar hydrogen in the heliosphere will be presented. Recent Sun-interstellar matter interaction model improvements, a non-stationary flow and a flexible latitude dependence, will be discussed. We also consider the influence of heliospheric interface on neutral flow and the remaining refinements, which could help to better interpret the results of the SWAN experiment on board SOHO. 相似文献
20.
M. Neugebauer 《Space Science Reviews》1994,70(1-2):319-330
The solar wind emanating from coronal holes (CH) constitutes a quasi-stationary flow whose properties change only slowly with the evolution of the hole itself. Some of the properties of the wind from coronal holes depend on whether the source is a large polar coronal hole or a small near-equatorial hole. The speed of polar CH flows is usually between 700 and 800 km/s, whereas the speed from the small equatorial CH flows is generally lower and can be <400 km/s. At 1 AU, the average particle and energy fluxes from polar CH are 2.5×108 cm–2 sec–1 and 2.0 erg cm–2 s–1. This particle flux is significantly less than the 4×108 cm–2 sec–1 observed in the slow, interstream wind, but the energy fluxes are approximately the same. Both the particle and energy fluxes from small equatorial holes are somewhat smaller than the fluxes from the large polar coronal holes.Many of the properties of the wind from coronal holes can be explained, at least qualitatively, as being the result of the effect of the large flux of outward-propagating Alfvén waves observed in CH flows. The different ion species have roughly equal thermal speeds which are also close to the Alfvén speed. The velocity of heavy ions exceeds the proton velocity by the Alfvén speed, as if the heavy ions were surfing on the waves carried by the proton fluid.The elemental composition of the CH wind is less fractionated, having a smaller enhancement of elements with low first-ionization potentials than the interstream wind, the wind from coronal mass ejections, or solar energetic particles. There is also evidence of fine-structure in the ratio of the gas and magnetic pressures which maps back to a scale size of roughly 1° at the Sun, similar to some of the fine structures in coronal holes such as plumes, macrospicules, and the supergranulation. 相似文献