共查询到10条相似文献,搜索用时 0 毫秒
1.
V. Sreekanth 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2013
Climatological aerosol optical depths (AOD) over Bangalore, India have been examined to bring out the temporal heterogeneity in columnar aerosol characteristics. AOD values at 550 nm derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor onboard NASA’s Terra and Aqua satellites, for the period of 2002–2011 have been analyzed (independently) for the purpose. Frequency distributions of the AOD values are examined to infer the monthly mean values. Monthly and seasonal variations of AOD are investigated in the light of regional synoptic meteorology. Climatological monthly and seasonal mean Terra and Aqua AOD values exhibited similar temporal variation patterns. Monthly mean AOD values increased from January, peaks during May and thereafter (except for a secondary peak during July) fall off to reach a minimum during December. Monsoon season recorded the highest climatological seasonal mean AOD, while winter season recorded the lowest. AOD values show an overall increasing trend on a yearly basis, which was found mainly due to sustained increase in the seasonal averaged AOD during summer. The results obtained in the present study are compared with that of the earlier studies over the same location and also with AOD over various other Indian locations. Finally, the radiative and climatic impacts are discussed. 相似文献
2.
Arijit De Animesh Maitra 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2021,67(1):290-297
The objective of this study is to investigate cloud attenuation at 30 GHz frequency using ground-based microwave radiometric observations at a tropical location, Kolkata. At higher frequencies and lower elevation angles, cloud attenuation is of major concern at a tropical location. The location experiences high value of liquid water path (LWP), which is responsible for cloud attenuation, during the Indian summer monsoon (ISM) and pre-monsoon season. Significant amount of cloud attenuation has been observed during monsoon season at 30 GHz. Two years observations of exceedance probability of cloud attenuation and worst month statistics are presented. The variation of cloud attenuation with frequencies for different elevation angles has also been investigated. The seasonal and diurnal patterns of cloud attenuation are examined. Cloud attenuation, inferred from radiometric measurements before rain commencement, has been compared to rain attenuation at Ku-band. Exceedance probabilities of cloud and rain attenuation have been compared. 相似文献
3.
Swastika Chakraborty Madhura Chakraborty Saurabh Das 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2021,67(12):4043-4053
Some second order rain attenuation statistics such as fade duration and fade slope are investigated on the basis of experimental measurements of received signals using the GSAT-14 satellite beacon signal at 20.2 GHz for three years (2014–2016) over the tropical location Ahmedabad (23.02 0E, 72.510N), India with an Elevation angle of 630. Existing models of fade duration are compared with experimental data in this study and exponent of power law model of fade duration at Ka band is further explored. A new model for fade duration for Ka band for tropical locations is proposed where the constant of exponent of attenuation in the power law is found to be 0.143 instead of 0.055 used in ITU-R. Other relevant parameters for implementation of fade mitigation technique to prevent the link outage like cumulative distribution of signal fade rate, maximum and minimum fade rise and fade fall are also studied. Fade slope asymmetry over tropical region is also investigated. Keeping in view of exploiting the commercial launch of Ka band in Indian region there is an urgent need for validation of the existing models of fade slope (specially looking into fade symmetry) and fade duration. It will help the SATCOM (Satellite Communication) link designer to improve closed loop fade mitigation technique to minimize the possible link failure/link outage over the tropical region. 相似文献
4.
P. Sikka R. Vijayakumar A.Mary Selvam Bh.V.R. Murty 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1982,2(5):127-129
Aerosol size distributions were retrieved by computing aerosol extinction parameters using extensive measurements of direct solar radiation made in the 0.4 and 0.6 μm wavelengths at Pune with Volz type sunphotometer during winter (November–February), pre-monsoon (March–May), monsoon (June–August) and post-monsoon (September–October) of 1980–1981. The computer aerosol size distributions are compared with the direct measurements made using Anderson eight-stage cascade impactor. There is agreement between the retrieved and measured size distributions. The retrieval method is simple and useful for intensive aerosol measurement programmes. 相似文献
5.
J.G. Cerqueira Jr. J.H. Fernandez J.J. Hoelzemann N.M.P. Leme C.T. Sousa 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2014
Due to the high costs of commercial monitoring instruments, a portable sun photometer was developed at INPE/CRN laboratories, operating in four bands, with two bands in the visible spectrum and two in near infrared. The instrument calibration process is performed by applying the classical Langley method. Application of the Langley’s methodology requires a site with high optical stability during the measurements, which is usually found in high altitudes. However, far from being an ideal site, Harrison et al. (1994) report success with applying the Langley method to some data for a site in Boulder, Colorado. Recently, Liu et al. (2011) show that low elevation sites, far away from urban and industrial centers can provide a stable optical depth, similar to high altitudes. In this study we investigated the feasibility of applying the methodology in the semiarid region of northeastern Brazil, far away from pollution areas with low altitudes, for sun photometer calibration. We investigated optical depth stability using two periods of measurements in the year during dry season in austral summer. The first one was in December when the native vegetation naturally dries, losing all its leaves and the second one was in September in the middle of the dry season when the vegetation is still with leaves. The data were distributed during four days in December 2012 and four days in September 2013 totaling eleven half days of collections between mornings and afternoons and by means of fitted line to the data V0 values were found. Despite the high correlation between the collected data and the fitted line, the study showed a variation between the values of V0 greater than allowed for sun photometer calibration. The lowest V0 variation reached in this experiment with values lower than 3% for the bands 500, 670 and 870 nm are displayed in tables. The results indicate that the site needs to be better characterized with studies in more favorable periods, soon after the rainy season. 相似文献
6.
B.M. Vyas Abhishek Saxena Chhagan Panwar 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2012
The paper describes behavior of surface ozone, its precursor gases, BC along with TOCC, TWVC, AOT1020 nm as well as UV and IR radiation intensities observed during the partial solar eclipse of 15th January, 2010 over Udaipur, where 52% solar disc is obscured due to the moon’s shadow. During the beginning to main eclipse phase, the deviation values of several air pollutants concentrations from eclipse to control day values vary in a small range from −9 to −2 ppb in case of surface ozone and −180 to −80 ppb for CO. The corresponding change in the values of BC observed from −3.3 to −.5 μg/m3. No significant change is found in NO2, NO or in ratio of NO2/NO values during the partial eclipse time. TOCC values decrease from 3 to 5 DU along with a reduction in UV radiation intensity from 20 to 35% from starting to the main eclipse phase. The AOT1020 nm values are found to increase from .2 to 1.0 along with a reduction in IR radiation intensity order of 50%. However, TWVC values decrease from .22 to .1 cm during the eclipse hours. The low level of dilution in surface ozone in eclipse period may be attributed with change in local atmospheric boundary layer dynamic conditions or limited air pollutants dispersion, in term of decreases in planetary boundary layer height, wind speed and hence ventilation coefficient in the same eclipse hours. Thus, present studies support the argument for the leading roles of photochemical reactions with its precursor gases under presence of solar radiation in surface ozone variability. Other possible controlling factors are advection of air pollutants from the polluted region as evident from backward wind trajectories and altering the local meteorological conditions. 相似文献
7.
B.H. Subbaraya A. Jayaraman 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1982,2(5):135-138
Measurements have been made of the atmospheric scattering in the ultraviolet (λ = 0.31 μm) during the 16 February 1980 solar eclipse rocket campaign. The amplitude of the scattered fluxes as well as the angular distribution could be measured from ground up to an altitude of about 24 km. The Rayleigh scattering component was estimated using standard atmospheric models and the observations have been used to study the scattering due to aerosols at tropospheric and lower stratospheric altitudes. 相似文献
8.
Kh. Karami S. Ghader A. Raeen 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2011
In the present work values of peak electron density (NmF2) and height of F2 ionospheric layer (hmF2) over Tehran region at a low solar activity period are compared with the predictions of the International Reference Ionosphere models (IRI-2001 and IRI-2007). Data measured by a digital ionosonde at the ionospheric station of the Institute of Geophysics, University of Tehran from July 2006 to June 2007 are used to perform the calculations. Formulations proposed by and are utilized to calculate the hmF2. The International Union of Radio Science (URSI) and International Radio Consultative Committee (CCIR) options are employed to run the IRI-2001 and IRI-2007 models. Results show that both IRI-2007 and IRI-2001 can successfully predict the NmF2 and hmF2 over Tehran region. In addition, the study shows that predictions of IRI-2007 model with CCIR coefficient has closer values to the observations. Furthermore, it is found that the monthly average of the percentage deviation between the IRI models predictions and the values of hmF2 and NmF2 parameters are less than 10% and 21%, respectively. 相似文献
9.
Jingrou Lin Danling Tang Werner Alpers Sufen Wang 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2014
It is well known that tropical cyclones can cause upwelling, decrease of sea surface temperature, increase of chlorophyll-a (Chl-a) concentration and enhancement of primary production. But little is known about the response of dissolved oxygen (DO) concentration to a typhoon in the open ocean. This paper investigates the impact of a typhoon on DO concentration and related ecological parameters using in situ and remote sensing data. The in situ data were collected 1 week after the passage of the super-typhoon Nanmadol in the northern South China Sea in 2011. An increase in DO concentration, accompanied by a decrease in water temperature and an increase in salinity and Chl-a concentration, was measured at sampling stations close to the typhoon track. At these stations, maximum DO concentration was found at a depth of around 5 m and maximum Chl-a concentration at depths between 50 and 75 m. The layer of high DO concentration extends from the surface to a depth of 35 m and the concentrations stay almost constant down to this depth. Due to the passage of the typhoon, also a large sea level anomaly (21.6 cm) and a high value of Ekman pumping velocity (4.0 × 10−4 m s−1) are observed, indicating upwelling phenomenon. At the same time, also intrusion of Kuroshio waters in the form of a loop current into the South China Sea (SCS) was observed. We attribute the increase of DO concentration after the passage of the typhoon to three effects: (1) entrainment of oxygen from the air into the upper water layer and strong vertical mixing of the water body due to the typhoon winds, (2) upwelling of cold nutrient-rich water which stimulates photosynthesis of phytoplankton and thus the generation of oxygen, which also increases the DO concentration due to cold water since the solubility of oxygen increase with decreasing water temperature, and, possibly, (3) transport of DO enriched waters from the Western Pacific to the SCS via the intrusion of Kuroshio waters. 相似文献
10.
Hu Wang Yangfei Hou Yamin Dang Jinzhong Bei Yize Zhang Jiexian Wang Yingyan Cheng Shouzhou Gu 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2021,67(2):883-901
The quality and availability of Uncalibrated Phase Delay (UPD) solutions are crucial to the Precise Point Positioning (PPP) service, and the long-term temporal variability and its contributing factors should be better understood. In this paper, we comprehensively investigate the long-term time-varying characteristics of each UPD product respectively generated by a global and regional network and their interoperable application in PPP-AR (ambiguity resolution), the sampling of the WL and NL UPDs are daily and 30 s, respectively. Firstly, in terms of our 30 day Wide-Lane (WL) UPD products of 31 satellites, the Standard Deviation (STD) of each satellite WL UPDs ranges from 0.04 to 0.06 cycles, indicating that the long-term prediction accuracy of satellite WL UPD is sufficient for fixing Wide-Lane ambiguities. Secondly, when a satellite in eclipsing the discontinulity may corrupt the determination of Narrow-Lane (NL) UPD in form of offset, as a result of lacking or poor satellite attitude dynamic modeling. When the influence of discontinuity is removed, the STD of our estimated satellite NL UPDs is less than 0.05 cycles. Thirdly, the STD of our estimated receiver WL UPDs is mainly below 0.2 cycles, which implies that its stability is one order poorer that of the satellite. In addition, if they are used for stations in and around the network covered region, the stability of the UPD products from the CMONOC (Crustal Movement Observation Network of China) is better than that from a global network, benefit from the fact that all the CMONOC stations are equipped with the same receiver type. Finally, the PPP-AR results show that a rate of 82.9% for stations with a WL-ambiguity-fixed rate of over 90% while 69.5% for stations with an NL-ambiguity-fixed rate of over 80% can be achieved when using UPD from the global network, which is worse than that of using UPD from the CMONOC (85.7% for stations with a WL-ambiguity-fixed rate of over 90% while 75% for stations with an NL-ambiguity-fixed rate of over 80%). The results of the experiment on the UPD interoperable application in PPP show that the global network UPD products can provide a fast AR at any single station, and the convergence time is well below 25 min. Particularly, when the location of a station is in and around the regional network, our results show that the PPP results obtained using regional UPDs enable the consistent use of global UPDs. When the location of a station is far away from the regional network, using the regional UPDs can not achieve PPP-AR. Finally, the WL UPDs of the previous day is used for forecasting to estimate the NL UPDs, the stability analysis results of NL UPDs solution and positioning results are demonstrate the validity of forecasted UPD products. 相似文献