首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Interstellar dust models, previously constrained only from the extinction curve, have been radically changed with the arrival of IRAS observations of the dust infrared emission. An important component of interstellar dust is likely to be made of small particles that show a fluctuating temperature upon impinging single photons and which can produce large near and mid infrared excesses ubiquitously observed in the Galaxy and external galaxies. The analysis of COBE data should soon improve our understanding of dust infrared emissivity and particularly for big grains in the submillimeter domain. We will discuss the key observations (spectral features, broad-band colors, correlations with gas tracers…) which put the best constraints on any dust models and show that the next generation of IR/submm satellites (ISO, SIRTF…) should improve our knowledge of interstellar dust composition and the dust redistribution of the stellar energy inside galaxies.  相似文献   

2.
The two components of the space radiation environment, galactic cosmic rays and solar energetic particles, are of special importance for the planning of space missions and designing space vehicles for flights in the inner heliosphere. There is a constant need for developing and updating the models for calculating the fluxes of these particles for purposes of forecasting radiation conditions anticipated for future flights, including missions to the Moon and Mars.  相似文献   

3.
High-energy heavy ions in the galactic cosmic radiation (HZE particles) may pose a special risk during long term manned space flights outside the sheltering confines of the earth's geomagnetic field. These particles are highly ionizing, and they and their nuclear secondaries can penetrate many centimeters of body tissue. The three dimensional patterns of ionizations they create as they lose energy are referred to as their track structure. Several models of biological action on mammalian cells attempt to treat track structure or related quantities in their formulation. The methods by which they do this are reviewed. The proximity function is introduced in connection with the theory of Dual Radiation Action (DRA). The ion-gamma kill (IGK) model introduces the radial energy-density distribution, which is a smooth function characterizing both the magnitude and extension of a charged particle track. The lethal, potentially lethal (LPL) model introduces lambda, the mean distance between relevant ion clusters or biochemical species along the track. Since very localized energy depositions (within approximately 10 nm) are emphasized, the proximity function as defined in the DRA model is not of utility in characterizing track structure in the LPL formulation.  相似文献   

4.
Since the publication of the last COSPAR International Reference Atmosphere (CIRA 1972) valuable progress has been achieved in improving our understanding of the terrestrial thermosphere. As a result, several empirical models are now available for numerous applications. The reliability of these models is discussed within the framework of known physical phenomena. The most recent published advances deal with longitudinal and universal time effects. Some general shortcomings are pointed out in order to stimulate farther progress.  相似文献   

5.
Since the importance of the coupling mechanisms between the mesosphere and the thermosphere has increasingly been recognized, the structure and variation of turbulence has become one of the subjects of extended investigations and discussions. In spite of the fundamental role of turbulence, theoretical difficulties and lack of observational information restrict its applicability to atmospheric modeling. In the following paper the basic ideas of the parameterization of turbulence and the most important observational techniques and results are reviewed. The comparison of observations with theoretical model calculations shows the difficulties which underly current investigations and indicates the trends of future research.  相似文献   

6.
This paper reviews the data base and empirical models that are available for the global representation of electron density in the topside ionosphere. Topside sounder and incoherent scatter measurements are the prime data sources. We assess their data volume and compatibility. Several empirical models are discussed (IRI, Bent, SLIM, and FAIM) and their specific characteristics and differences are pointed out. Global and temporal trends as predicted by these different models are compared and contrasted with measured results. Most models use vertical height rather than a field-aligned height coordinate, although it is well known that topside electrons are confined to moving along magnetic field lines. We examine several magnetic coordinate systems and evaluate their merits for empirical modelling.  相似文献   

7.
The purpose of this research work is to validate the ionospheric models (IRI and CHIU) to assess its suitability and usefulness as an operational tool. The ionospheric model is a computer model designed to predict the state of the global ionosphere for 24 h. The scope was limited to conduct comparisons between the predicted F2 layer critical frequencies (f0F2) against observed ionosonde data. The ionospheric prediction model (IPM) was designed to predict by using monthly median sunspot number, while the observation data are taken from two digital ionospheric sounding stations (Okinawa, 26.28N, 127.8E and Wakkanai, 45.38N, 141.66E) which lies within the mid-latitude region of the globe. Analysis of the f0F2 data from stations for year (2001) with high solar activity and year (2004) with low solar activity, four months (March, June, September and December) chosen based primarily on data availability. From results it seen that the ratio between monthly median predicted and observed f0F2 values for each model used in this research work and for the chosen months was nonlinear with local time, so the empirical formula for applying correction factors were determined, these formula can be used to correct the error occurred in predicted f0F2 value.  相似文献   

8.
A survey of empirical models of particles (electrons, protons and heavier ions) of the Earth's radiation belts developed to date is presented. Results of intercomparison of the different models as well as comparison with experimental data are reported. Aspects of further development of radiation condition modelling in near-Earth space, including dynamic model developing are discussed.  相似文献   

9.
Recent astronomical observations of supernovae and cosmic microwave background indicate that the universe is accelerating. Scalar–tensor theories of gravity give rise to suitable cosmological models where a late-time accelerated expansion is naturally realized. In an alternative proposal the cosmic acceleration is generated by means of a scalar field (quintessence), in a way similar to the early-time inflation. In this paper, we consider two classes of cosmological models with scalar fields. The first one corresponds to the Jordan–Brans–Dicke tensor–scalar theory with a cosmological scalar and the second one contains a conformally coupled scalar field with quartic potential. In both type of models the cosmological dynamics is described and the deceleration parameter is evaluated. The values of the parameters are specified for which a late-time accelerated expansion is realized.  相似文献   

10.
The behavior of an aqueous-dominant multicomponent cometary model is examined at high doses of ionizing radiation. The system is composed of a water mixture of HCN (0.2 mol dm-3), CH3CN (0.04 mol dm-3), C2H5CN (0.02 mol dm-3), CH3OH (0.12 mol dm-3) and HCO2H (0.01 mol dm-3. It was exposed to gamma rays at doses up to 18.5 MGy. The chemical kinetic database used in the computer treatment of experimental data consists of 79 reactions. A complex mixture of products has been synthesized: gases, amino acids, carboxylic acids and polymeric material. The results suggest that the pristine material in cometary nuclei may have been chemically altered by the action of cosmic rays and embedded radionuclides.  相似文献   

11.
Probably the only reliable method of checking an electron density model below 70 km is to calculate from it what would be obtained by VLF or LF propagation over certain paths, and to compare the results with actual observations. This has been done for the IRI at various frequencies from 16 to 70 kHz; the results agree in places but differ substantially elsewhere. Previous models described by the author give satisfactory results and it is suggested that certain features of them might be incorporated with advantage in the IRI. In particular, it is impossible to get agreement with VLF propagation in all seasons by means of a model varying only with solar zenith angle, such as the IRI from 50–90 km.  相似文献   

12.
13.
It has been known for some time that adequate assessment of spacecraft shield requirements and concomitant estimates of astronauts radiation exposures from galactic cosmic radiation requires accurate, quantitative methods for characterizing these radiation fields as they pass through thick absorbers. The main nuclear interaction processes involved are (1) nuclear elastic and inelastic collisions, and (2) nuclear breakup (fragmentation) and electromagnetic dissociation (EMD). Nuclear fragmentation and EMD are important because they alter the elemental and isotopic composition of the transported radiation fields. At present, there is no suitably accurate theory for predicting nuclear fragmentation cross sections for all collision pairs and energies of interest in space radiation protection. Typical cross-section differences between theory and experiment range from about 25 percent to a factor of two. The resulting errors in transported flux, for high linear energy transfer (LET) particles, are comparble to these cross-section errors. In this overview, theoretical models of heavy ion fragmentation currently used to generate input data bases for cosmic-ray transport and shielding codes are reviewed. Their shortcomings are discussed. Further actions needed to improve their accuracy and generality are presented.  相似文献   

14.
Data bases and limits of applicability of existing empirical thermospheric models are reviewed by using these models together with solar EUV irradiance data in studying the solar activity effect on composition, density and temperature. For two rather short aeronomy missions of the AEROS A and B satellites solar EUV indices as proposed by Schmidtke are used in comparison with the 10.7 cm solar flux F in determining the solar activity effect in in-situ composition measurements sampled by the same satellites at 250, 310 and 380 km altitude. No advantage of solar EUV indices over F could be determined.  相似文献   

15.
On behalf of an URSI Working Group 3 initiated study (VIM), three ionospheric models, IRI, PL/PRISM and FLIP, are compared with electron density profiles derived from ionograms Millstone Hill. Four months of data in 1989/90 were analyzed. For most of the time, N(h) profiles were available every 15 minutes providing a good statistical database for the evaluation of the ionospheric models in terms of diurnal and seasonal variations.  相似文献   

16.
Since the publication of the last COSPAR International Reference Atmosphere (CIRA 72), large amounts of ozone data acquired from satellites have become available in addition to increasing quantities of rocketsonde, balloonsonde, Dobson, M83, and Umkehr measurements. From the available archived satellite data, models are developed for the new CIRA using 5 satellite experiments (Nimbus 7 SBUV and LIMS, AEM-2 SAGE, and SME IR and UVS) of the monthly latitudinal and altitudinal variations in the ozone mixing ratio in the middle atmosphere. Standard deviations and interannual variations are also quantified. The satellite models are shown to agree well with a previous reference model based on rocket and balloon measurements.  相似文献   

17.
We review the status of the best “off-the-shelf” tool available for the study of dynamical behavior of coronal transients and traveling interplanetary disturbances. This tool involves numerical solution of the initial-boundary value problem of multi-dimensional time-dependent magnetohydrodynamics. While this tool cannot address questions of turbulence and kinetic behavior, we suggest that deeper understanding of large scale phenomena can be obtained by direct comparison of the MHD models with multi-disciplinary synoptic observations of specific events on the sun, and in the corona and interplanetary space. Conclusions reached after a recent critique (based on a limited set of observational and numerical data) of the MHD paradigm's application to coronal transients are examined and found to have limited validity. Substantial observational progress was achieved during SMY through ground- and space-based observations of solar and interplanetary events. Many of these observations can confidently be associated with one another for specific events. These associations can be combined into a reasonable scenario of geometrical extent and mass, energy and momentum transfer in the framework of the solar-terrestrial chain of cause and effect. Several of these events during STIP Interval VII in August 1979 are used to provide test cases for an MHD simulation that is described with some details. The bringing-together of diverse observations is necessary in order to outline a program for the testing of dynamical models and their more physically-restricted approximations.  相似文献   

18.
Semi-empirical models are derived predominantly from satellite-borne observations. The nature of these observations restricts the applicability of the models mainly to the atmospheric regions sampled, i.e. the upper thermosphere. Current models are only capable of reproducing a zero-order approximation of the structure of the lower thermosphere. Based on selected examples, the progress in atmospheric research since CIRA-72 as well as the continuing deficiencies are demonstrated.  相似文献   

19.
冗余测量参数估计的四种数学模型   总被引:1,自引:0,他引:1  
针对冗余测量的不同情况,提出了四种数学模型及其解算公式,并给出了估计值误差的计算方法。  相似文献   

20.
Neural network (NN) models for the low latitude and the polar ionosphere from the D- to the F-region were developed which are based on incoherent scatter radar data from Arecibo and EISCAT Svalbard, respectively. The various geophysical input parameters defining the NN are not only the ones that represent the time one wants to predict, but also the geophysical conditions prior to the time of the prediction. The optimum length of these preceding periods are derived for the two models are different, but a period of 60 days is a compromise acceptable for both latitudes. Furthermore from the Arecibo data time constants of electron density decay after sundown are derived which – arguably – are also relevant elsewhere, including the polar latitudes. Whereas at all altitudes the electron densities decay exponentially after sundown, below 300 km there is an additional variation with solar zenith angle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号