共查询到20条相似文献,搜索用时 0 毫秒
1.
Hard X-ray and high-frequency decimetric radio observations of the 4 April 2002 solar flare 总被引:1,自引:0,他引:1
S.R. Kane H.S. Sawant J.R. Cecatto M.C. Andrade F.C.R. Fernandes M. Karlicky H. Meszarosova 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2003,32(12):2503-2508
Hard X-ray and high frequency decimetric type III radio bursts have been observed in association with the soft X-raysolar flare (GOES class M 6.1) on 4 April 2002 (1532 UT). The flare apparently occurred 6 degrees behind the east limb of the Sun in the active region NOAA 9898. Hard X-ray spectra and images were obtained by the X-ray imager on RHESSI during the impulsive phase of the flare. The Brazilian Solar Spectroscope and Ondrejov Radio Telescopes recorded type III bursts in 800–1400 MHz range in association with the flare. The images of the 3–6, 6–12, 12–25, and 25–50 keV X-ray sources, obtained simultaneously by RHESSI during the early impulsive phase of the flare, show that all the four X-ray sources were essentially at the same location well above the limb of the Sun. During the early impulsive phase, the X-ray spectrum over 8–30 keV range was consistent with a power law with a negative exponent of 6. The radio spectra show drifting radio structures with emission in a relatively narrow (Δf ≤ 200 MHz) frequency range indicating injection of energetic electrons into a plasmoid which is slowly drifting upwards in the corona. 相似文献
2.
N. Vilmer S. Krucker G. Trottet R.P. Lin 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2003,32(12):2509-2515
The GOES M8.2 flare on 10 April 2002 at 1230 UT was observed at X-ray wavelengths by RHESSI and atmetric/decimetric wavelengths by the Nançay Radioheliograph (NRH). We discuss the temporal evolution of X-ray sources together with the evolution of the radio emission sites observed at different coronal heights by the NRH. While the first strong HXR peak at energies above 50 keV arises from energy release in compact magnetic structures (with spatial scales of a few 104 km) and is not associated with strong radio emission, the second one leads to energy release in magnetic structures with scales larger than 105 km and is associated with intense decimetric/metric and dekametric emissions. We discuss these observations in the context of the acceleration sites of energetic electrons interacting at the Sun and of escaping ones. 相似文献
3.
I.V. Zimovets M. Gros A.B. Struminsky 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2009
We report multi-wavelength investigation of the pre-impulsive phase of the 13 December 2006 X-class solar flare. We use hard X-ray data from the anticoincidence system of spectrometer onboard INTEGRAL (ACS) jointly with soft X-ray data from the GOES-12 and Hinode satellites. Radio data are from Nobeyama and Learmonth solar observatories and from the Culgoora Solar Radio Spectrograph. The main finding of our analysis is a spiky increase of the ACS count rate accompanied by surprisingly gradual and weak growth of microwave emission and without detectable radio emission at meter and decimeter wavelengths about 10 min prior to the impulsive phase of the solar flare. At the time of this pre-flare hard X-ray burst the onset of the GOES soft X-ray event has been reported, positive derivative of the GOES soft X-ray flux started to rise and a bright spot has appeared in the images of the Hinode X-ray telescope (XRT) between the flare ribbons near the magnetic inversion line close to the sources of thermal and non-thermal hard X-ray emission observed by Reuven Ramaty High-Energy Solar Spectroscopic Imager (RHESSI) during the flare. These facts we consider as evidences of solar origin of the increased pre-flare ACS count rate. We briefly discuss a possible cause of the pre-flare emission peculiarities. 相似文献
4.
《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2005,35(10):1805-1812
The GOES X3.9 flare on 03 November 2003 at ∼09:45 UT was observed from metric to millimetric wavelengths by the Nançay Radioheliograph (NRH), the Radio Solar Telescope Network (RSTN) and by radio instruments operated by the Institute of Applied Physics (University of Bern). This flare was simultaneously observed and imaged up to several 100 keV by the RHESSI experiment. The time profile of the X-ray emission above 100 keV and of the radio emissions shows two main parts, impulsive emission lasting about 3 min and long duration emission (partially observed by RHESSI) separated in time by 4 min. We shall focus here on the modulations of the broad-band radio continua and of the X-ray emissions observed in the second part of the flare. The observations suggest that gyrosynchrotron emission is the prevailing emission mechanism even at decimetric wavelengths for the broad-band radio emission. Following this interpretation, we deduce the density and the magnetic field of the decimetric sources and briefly comment on possible interpretations of the modulations. 相似文献
5.
M.-J. Martres Z. Mouradian I. Soru-Escaut 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1984,4(7):31
The homologous flares observed in the same region of a spotgroup testify the existence and the duration of a permanent instability. However, they also attest that the general magnetic configuration is not destroyed by these flares and that it changes up to the death of the site.The study of every flaring sites where more than ten flares occur has been performed in Meudon for the 1974–1980 period.One hundred and sixty-six sites have been analysed from the rotation where the A.R. is observed up to five rotations ahead. The basis of the study are the “Synoptic Maps”. A relation is found between the presence of crossing of “filament-phantom” corridors and the location of the homologous flare sites.1 相似文献
6.
M.A. Van Zele A. Meza 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2011
This paper studies the efficiency of geomagnetic solar flare effects (gsfe) in X solar flare detection; so during the period 1999–2007 a comparison between solar flare (sf) observed by satellites of the Geostationary Operational Environmental Satellite (GOES) programme and gsfe published by the Service International des Indices Geomagnetiques (SIIG) is made. 相似文献
7.
L van Driel-Gesztelyi P.K Manoharan M Pick P.P Démoulin 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1997,19(12):1883-1886
Yohkoh X-ray images, multifrequency two-dimentional observations of the Nancay Radioheliograph, Kitt Peak and Mees magnetograms provide a unique set of data with which to study a C4.7 long-duration flare that was observed close to the equator (S07, W11) on 25 Oct. 1994 at 09:49 UT. Linear force-free field extrapolations indicate a very high degree of non-potentiality in the active region. The X-ray flare started with the expansion of spectacular twisted loops. Fifteen minutes after the flare onset sporadic radio (type III) bursts were observed spreading over an area of almost 1/3 of the solar disc and two remote X-ray brightenings appeared over quiet regions of opposite magnetic polarity located in on opposite hemispheres of the Sun. In the close vicinity of these remote brightenings two coronal holes formed. The timing and location of these events combined with the overall magnetic configuration provide evidence for a large-scale magnetic reconnection occurring between the expanding twisted loops and the overlying huge loops which inter-connect quiet solar regions. 相似文献
8.
T.I. Gombosi A.J. Owens 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1981,1(3):115-119
Numerical solutions are presented for the propagation of solar cosmic rays interplanetary space, including the effects of pitch-angle scattering and adiabatic focusing. The intensity-time profiles can be well fitted by a simple radial spatial diffusion equation with scattering mean-free path λfit. For low-rigidity particles the radial mean-free path so obtained is significantly larger than the mean-free path calculated from the scattering coefficient due to the inapplicability of the diffusive approximation early in the event. The well-known discrepency between λfit and the theoretical predictions may be resolved by these calculations. 相似文献
9.
C. Sawyer 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1982,2(11):265-270
A multidisciplinary study of this solar-interplanetary event is summarized by two main points: this flare was an incident in a process that began days before the flare, and continued after the flare; and the chain of events can be interpreted most simply in terms of energy input over scales of time and space that are large compared to the flare seen in the light of Hα. In support of these points, 5 aspects of the flare are described here: (1) hours before the flare, slow changes in coronal structure were associated with radio continuum emission, suggesting large-scale magnetic-field changes and the presence of energetic electrons; (2) long-lived X-ray loops require sustained energy input for at least an hour after the flare start; (3) interplanetary disturbance near earth is probably related to this limb flare, although the (expected) absence of a shock makes identification uncertain; (4) the coronal mass ejection overlay decaying magnetic field; (5) speed derived from frequency drift of the type II radio burst in the low corona, and from the travel time of the disturbance to 1 a.u., are about twice as great as the observed speed of the coronal mass ejection and of the disturbed solar-wind speed. 相似文献
10.
《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2007,39(9):1389-1393
An occulted solar flare occurred at about 06:07 UT on 2002, November 2. The RHESSI X-ray images show two separate parts. The lower part consists of a complete loop and the upper part a coronal source which well extends above the solar limb. The loop source shrank for about 3 min with a speed of ∼24 km s−1 during the early impulsive phase and then expanded at ∼7 km s−1, while the coronal source presented an upward motion at about 6 km s−1. We obtained the temperature map of the loop source from RHESSI image spectrum. The temperature of the loop increases with altitude, indicating that the reconnection X-point of this flare is located above the loop source. However, the apparent coronal source is the top of another independent large-scale loop. 相似文献
11.
H. S. Hudson 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1981,1(13):247-250
HEAO-1 observed hard radiations (X- and gamma-rays) from a major solar flare on 11 July 1978. The observations showed gamma-ray line and continuum emission extending to the highest energy observed. The lines are identified with the 2.2 MeV line of deuterium formation and the 4.4 MeV line of inelastic scattering on 12C, both previously observed in the flares of August 1972 [1]. The 11 July flare was identified as a white-light flare by observations at Debrecen [2]. It thus provides the first opportunity for a detailed examination of white-light flare theories that depend upon proton heating of the photosphere. The line strength over a four-minute integration at 2.2 MeV was 1.00 ± 0.29 ph(cm2 sec)−1, and the gamma-ray emission (excluding the 2.2 MeV line which was appreciably delayed) lagged by less than 20 sec approximately after the hard X-ray and microwave fluxes. We conclude that the “second-stage” acceleration of high-energy solar particles must commence promptly after the impulsive phase. 相似文献
12.
Abdelrazek M.K. Shaltout Eid A. Amin M.M. Beheary R.H. Hamid 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2019,63(7):2300-2311
We investigate on the relationship between flares and coronal mass ejections (CMEs) in which a flare started before and after the CME events which differ in their physical properties, indicating potentially different initiation mechanisms. The physical properties of two types flare-correlated CME remain an interesting and important question in space weather. We study the relationship between flares and CMEs using a different approach requiring both temporal and spatial constraints during the period from December 1, 2008 to April 30, 2017 in which the CMEs data were acquired by SOHO/LASCO (Solar and Heliospheric Observatory/Large Angle Spectrometric Coronagraph) over the solar cycle 24. The soft X-ray flare flux data, such as flare class, location, onset time and integrated flux, are collected from Geostationary Environmental satellite (GOES) and XRT Flare catalogs. We selected 307 CMEs-flares pairs applying simultaneously temporal and spatial constraints in all events for the distinguish between two associated CME-flare types. We study the correlated properties of coincident flares and CMEs during this period, specifically separating the sample into two types: flares that precede a CME and flares that follow a CME. We found an opposite correlation relationship between the acceleration and velocity of CMEs in the After- and Before-CMEs events. We found a log-log relation between the width and mass of CMEs in the two associated types. The CMEs and flares properties show that there were significant differences in all physical parameters such as (mass, angular width, kinetic energy, speed and acceleration) between two flare-associated CME types. 相似文献
13.
Phillip C. Chamberlin Thomas N. WoodsFrancis G. Eparvier 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2008
The solar photon output from the Sun, which was once thought to be constant, varies considerably over time scales from seconds during solar flares to years due to the solar cycle. This is especially true in the wavelengths shorter than 190 nm. These variations cause significant deviations in the Earth and space environment on similar time scales, which then affects many things including satellite drag, radio communications, atmospheric densities and composition of particular atoms, molecules, and ions of Earth and other planets, as well as the accuracy in the Global Positioning System (GPS). The Flare Irradiance Spectral Model (FISM) is an empirical model that estimates the solar irradiance at wavelengths from 0.1 to 190 nm at 1 nm resolution with a time cadence of 60 s. This is a high enough temporal resolution to model variations due to solar flares, for which few accurate measurements at these wavelengths exist. This model also captures variations on the longer time scales of solar rotation (days) and solar cycle (years). Daily average proxies used are the 0–4 nm irradiance, the Mg II c/w, F10.7, as well as the 1 nm bins centered at 30.5 nm, 121.5 (Lyman Alpha), and 36.5 nm. The GOES 0.1–0.8 nm irradiance is used as the flare proxy. The FISM algorithms are given, and results and comparisons are shown that demonstrate the FISM estimations agree within the stated uncertainties to the various measurements of the solar Vacuum Ultraviolet (VUV) irradiance. 相似文献
14.
E.I. Daibog E.A. Devicheva S.V. Golenetskii Yu.A. Guryan V.G. Kurt Yu.I. Logachev A.V. Nogteva V.G. Stopovskii A. Varga 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1981,1(3):73-76
The event was observed onboard the space probe Venera 11 at a heliolongitude close to 57°. Electron spectra in the energy range from 60 to 2100 keV are determined and compared with X ray spectra. As a result it was found that conditions of the “thin target” model were realized in the April 13, 1979 flare. Estimates of the total number of accelerated electrons and the energy of the flare are presented. 相似文献
15.
P S Haskins J E McKisson A G Weisenberger D W Ely T A Ballard C S Dyer P R Truscott R B Piercey A V Ramayya 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1992,12(2-3):331-334
An X2/2B level solar flare occurred on 12 August, 1989, during the last day of the flight of the Space Shuttle Columbia (STS-28). Detectors on the GOES 7 satellite observed increased X-ray fluxes at approximately 1400 GMT and a solar particle event (SPE) at approximately 1600 GMT. Measurements with the bismuth germanate (BGO) detector of the Shuttle Activation Monitor (SAM) experiment on STS-28 showed factors of two to three increases in count rates at high latitudes comparable to those seen during South Atlantic Anomaly (SAA) passages beginning at about 1100 GMT. That increased activity was observed at both north and south high latitudes in the 57 degrees, 300 kilometer orbit and continued until the detector was turned off at 1800 GMT. Measurements made earlier in the flight over the same geographic coordinates did not produce the same levels of activity. This increase in activity may not be entirely accounted for by observed geomagnetic phenomena which were not related to the solar flare. 相似文献
16.
17.
《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2005,35(10):1857-1863
Observations of hard X-ray (HXR)/γ-ray continuum and γ-ray lines produced by energetic electrons and ions, respectively, colliding with the solar atmosphere, have shown that large solar flares can accelerate ions up to many GeV and electrons up to hundreds of MeV. Solar energetic particles (SEPs) are observed by spacecraft near 1 AU and by ground-based instrumentation to extend up to similar energies as in large SEP events, but it appears that a different acceleration process, one associated with fast coronal mass ejections is responsible. Much weaker SEP events are observed that are generally rich in electrons, 3He, and heavy elements. The energetic particles in these events appear to be similar to those accelerated in flares. The Ramaty high energy solar spectroscopic imager (RHESSI) mission provides high-resolution spectroscopy and imaging of flare HXRs and γ-rays. Such observations can provide information on the location, energy spectra, and composition of the flare accelerated energetic particles at the Sun. Here, preliminary comparisons of the RHESSI observations with observations of both energetic electron and ion near 1 AU are reviewed, and the implications for the particle acceleration and escape processes are discussed. 相似文献
18.
Weixing Wan Libo Liu Hong Yuan Baiqi Ning Shunrong Zhang 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2005,36(12):2465-2469
This work studies the sudden increases in total electron content of the ionosphere caused by the very intense solar flare on July 14, 2000. Total electron content (TEC) data observed from a Global Positioning System (GPS) network are used to calculate the flare-induced TEC increment, δTECf, and variation rate, dTECf/dt. It is found that both dTECf/dt and δTECf are closely related with the solar zenith angles. To explain the observation results, we derived a simple relationship between the partial derivative of the flare-induced TEC, ∂TECf/∂t, which is a good approximation for dTECf/dt, and the solar zenith angle χ, as well as the effective flare radiation flux If, according to the well-known Chapman theory of ionization. The derived formula predicted that ∂TECf/∂t is proportional to If and inverse proportional to Chapman function ch(χ). This theoretical prediction not only explains the correlation of dTECf/dt and δTECf with χ as shown in our TEC observation, but also gives a way to deduce If from TEC observation of GPS network. Thus, the present work shows that GPS observation is a powerful tool in the observation and investigation of solar flare effects on the ionosphere, i.e., the sudden ionospheric disturbances, which is a significant phenomenon of space weather. 相似文献
19.
Marcos E. Machado Gustavo Lerner 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1984,4(7):239-241
We show that the observations of a limb flare, in which a hard X-ray (16–30 keV) source is seen at the boundary between two interacting magnetic structures, indicate the presence of hot (T ? 6 × 107 K) plasma within the region. Non thermal bremsstrahlung processes do not agree with these observations. We discuss the possible causes of the heating. 相似文献
20.
Xuan Jiayu Li Zhi Gu Xiaoma Li Weibao Xu Aoao Tang Yuhua 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1982,2(11):221-224
The active region morphology and the features of solar radio bursts and sight-line velocity distribution of a flare of Importance 3B on the solar disc (AR 2562) on 1980 July 14 are introduced in this article. 相似文献