共查询到20条相似文献,搜索用时 15 毫秒
1.
R.A. Harrison A. Fludra E.C. Sawyer J.L. Culhane K. Norman A.I. Poland W.T. Thompson O. Kjeldseth-Moe B. Aschenbach M.C.E. Huber A.H. Gabriel H.E. Mason 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1997,20(12):2239-2248
We present first results from the Coronal Diagnostic Spectrometer (CDS) aboard the ESA/NASA Solar and Heliospheric Observatory (SOHO). CDS is a double spectrometer operating in the 151–785 Å range. This region of the solar spectrum is rich in emission lines from trace elements in the solar atmosphere, which can be used to derive diagnostic information on coronal and transition region plasmas. Early spectra are presented and well identified lines are listed. In addition, examples of images in selected wavelength ranges are shown, for a prominence, a loop system and a bright point, demonstrating well the power of such extreme ultraviolet observations. 相似文献
2.
《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2023,71(4):1893-1899
Coronal spectroscopy has pushed forward the understanding of physical processes in all phenomena on the Sun. In this review we concentrate specifically on plasma parameters measured in sources of the slow solar wind in active regions and the early phases of solar flares. These topics are a key part of the science goals of the Solar Orbiter mission (Müller et al., 2020) which has been designed to probe what drives the solar wind and solar transients that fill the heliosphere.Active regions, outside of flaring, have general characteristics that include closed loops showing red-shifted (down-flowing plasma), and the edges of the active regions showing blue-shifted (upflowing plasma). Constraining and understanding the evolution, behaviour and cause of the flows has been developed in the past years and are summarised. Of particular importance is the upflowing plasma which, in some cases, can contribute to the slow solar wind, and this review concentrates on recent results on this topic.The early phases of solar flares and their energy sources are not yet fully understood. For decades, there has been a huge interest in pin-pointing the trigger of a solar flare. Coronal spectroscopy has revealed small-scale dynamics that occurs tens of minutes before the flare begins. The understanding of the trigger is key to improving flare predictions in the future, as well as understanding the physical processes.Finally we look to the future of coronal spectroscopy, with new instruments and methodologies being developed that build on the current knowledge, and will improve significantly our physical understanding of processes at all scales on the Sun. 相似文献
3.
B.R. Dennis A. Veronig R.A. Schwartz L. Sui A.K. Tolbert D.M. Zarro RHESSI Team 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2003,32(12):2459-2464
It is believed that a large fraction of the total energy released in a solar flare goes initially into acceleratedelectrons. These electrons generate the observed hard X-ray bremsstrahlung as they lose most of their energy by coulomb collisions in the lower corona and chromosphere. Results from the Solar Maximum Mission showed that there may be even more energy in accelerated electrons with energies above 25 keV than in the soft X-ray emitting thermal plasma. If this is the case, it is difficult to understand why the Neupert Effect — the empirical result that for many flares the time integral of the hard X-ray emission closely matches the temporal variation of the soft X-ray emission — is not more clearly observed in many flares. From recent studies, it appears that the fraction of the released energy going into accelerated electrons is lower, on average, for smaller flares than for larger flares. Also, from relative timing differences, about 25% of all flares are inconsistent with the Neupert Effect. The Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) is uniquely capable of investigating the Neupert Effec since it covers soft X-rays down to 3 keV (when both attenuators are out of the field of view) and hard X-rays with keV energy resolution, arcsecond-class angular resolution, and sub-second time resolution. When combined with the anticipated observations from the Soft X-ray Imager on the next GOES satellite, these observations will provide us with the ability to track the Neupert Effect in space and time and learn more about the relation between plasma heating and particle acceleration. The early results from RHESSI show that the electron spectrum extends down to as low as 10 keV in many flares, thus increasing the total energy estimates of the accelerated electrons by an order of magnitude or more compared with the SMM values. This combined with the possible effects of filling factors smaller than unity for the soft X-ray plasma suggest that there is significantly more energy in nonthermal electrons than in the soft X-ray emitting plasma in many flares. 相似文献
4.
B.I. Meerson P.V. Sasorov 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1981,1(3):77-81
Drift instabilities arising when accelerated protons are trapped by coronal magnetic fields of active regions are investigated theoretically. If β, the ratio of total (plasma + energetic particles) pressure and magnetic field pressure is larger than some value, , the magnetic trap is destructed and protons are released into interplanetary space. If , the trapped protons excite gradient instability due to magnetic drift resonance. This “universal” instability results in rapid development of strong Alfvén wave turbulence with small wavelengths transverse to the magnetic field. Particle diffusion due to the waves has a rather complicated character and appears to be weak as compared to quasilinear diffusion. The role of Alfvén waves may consist in additional heating of the corona in the regions of closed magnetic field lines. 相似文献
5.
N. Gopalswamy H. Xie P. Mäkelä S. Yashiro S. Akiyama W. Uddin A.K. Srivastava N.C. Joshi R. Chandra P.K. Manoharan K. Mahalakshmi V.C. Dwivedi R. Jain A.K. Awasthi N.V. Nitta M.J. Aschwanden D.P. Choudhary 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2013
Employing coronagraphic and EUV observations close to the solar surface made by the Solar Terrestrial Relations Observatory (STEREO) mission, we determined the heliocentric distance of coronal mass ejections (CMEs) at the starting time of associated metric type II bursts. We used the wave diameter and leading edge methods and measured the CME heights for a set of 32 metric type II bursts from solar cycle 24. We minimized the projection effects by making the measurements from a view that is roughly orthogonal to the direction of the ejection. We also chose image frames close to the onset times of the type II bursts, so no extrapolation was necessary. We found that the CMEs were located in the heliocentric distance range from 1.20 to 1.93 solar radii (Rs), with mean and median values of 1.43 and 1.38 Rs, respectively. We conclusively find that the shock formation can occur at heights substantially below 1.5 Rs. In a few cases, the CME height at type II onset was close to 2 Rs. In these cases, the starting frequency of the type II bursts was very low, in the range 25–40 MHz, which confirms that the shock can also form at larger heights. The starting frequencies of metric type II bursts have a weak correlation with the measured CME/shock heights and are consistent with the rapid decline of density with height in the inner corona. 相似文献
6.
Debi Prasad Choudhary 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2012
We observed 10 active regions through their disk passage during June 25–August 25, 1988, with the Tower Vector Magnetograph (TVM) of Marshall Space Flight Center. The TVM was used in scanning mode to measure the photospheric Doppler velocities with the Line-Center-Magnetogram (LCM) technique in the spectral line of FeI 5250.2 Å. In this paper we present the result of a subset of observations obtained while the active regions were situated away from the solar limb. A wide range of magnetic complexity and associated chromospheric activity characterized these active regions. It was found that the value of zero-crossing wavelength of the integrated Stokes-V profile of two opposite magnetic polarities were different, corresponding to Doppler velocities ranging from ∼100 m s−1 to ∼1475 m s−1. The measurements of relative velocities between different locations, connected by magnetic flux tubes as inferred from YOHKOH soft X-ray and TRACE 171 Å Fe IX images, showed widely different values of dominant localized flows. The region of parasite polarity, which showed recurrent chromospheric activity, was blue shifted with respect to the main “magnetic element” of the same polarity. Some of them were also the sites of sheared magnetic field configuration. The magnitude of the relative velocity between the leading and following polarity is more for the active regions of higher “field asymmetry”. 相似文献
7.
M. Malinovsky-Arduini C. Fröhlich 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1984,4(7):383-392
The Solar and Heliospheric Observatory is designed to address basic questions concerning the Sun and Heliosphere. In this paper our present understanding of coronal heating, solar wind generation and solar oscillations is described. The proposed model SOHO instrument payload is outlined and it is shown how it would contribute to our understanding in the above three fields. 相似文献
8.
S I Ramirez R Navarro-Gonzalez P Coll F Raulin 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2001,27(2):261-270
A quantitative comparison of the products arising from the irradiation of a Titan's simulated atmosphere is presented. The energy sources used represent some of the main events that occur in the satellite's atmosphere. All of the compounds identified are classified in the hydrocarbon and nitrile chemical families. Almost all of the detected compounds in Titan's atmosphere are produced by one or more energy sources. The compounds with the highest energy yields include the C2 hydrocarbons, methanonitrile and ethanonitrile. The possibility of using some of the produced organics as tracer compounds during the Huygens descend to identify the leading energy form in the different atmospheric levels remains open. 相似文献
9.
V.V. Zharkova S.I. Zharkov 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2008,41(6):881-892
The Solar Feature Catalogues for sunspots and active regions measured with SOHO/MDI instrument and Ca II K3 spectroheliograph of the Paris-Meudon Observatory are analyzed with the automated classification technique for sunspot groups and active region polarities. We report the first classification results for daily variations of tilt angles (normal and trigonometric ones) in sunspot groups (SG) and active (AR) regions in the cycle 23. The average normal tilts are presented for every year at the ascending and descending phases of the cycle 23 which are similar to those deduced by other authors for the cycles 19–22. The normal tilts of both the sunspot groups and active regions are shown to increase in the ascending phase and a decrease in the descending phase. Similar to SG and AR areas, the trigonometric tilts are shown to have the noticeable North–South asymmetry with the Southern hemisphere dominant in the selected ascending and descending periods. The normal tilt variations with latitude follow Joy’s law revealing a periodicity along the meridian of about 10° and reaching the maximum of 14° at the latitude of about 32° corresponding to the top of the ‘royal zone’ where the sunspots appear. The variations of polarity separation with a latitude are in an anti-phase with those of the tilts reaching a maximum at the latitude of 35° and showing a small positive separation for the groups/active regions in a vicinity of the average tilts ±40°. The ratio R of the polarity separation to the trigonometric tilt fits the linear function of a latitude φ as R = −0.0213φ − 0.1245 confirming positive separation for the polarities of active regions with the average tilts, or the dominance of activity in the Southern hemisphere activity, for the selected period of observations. 相似文献
10.
E. Jourdain L. Bassani J. P. Roques P. Mandrou J. Ballet P. Laurent F. Lebrun J. Paul A. Finogenov E. Churazov M. Gilfanov R. Sunyaev I. Dyatchkov N. Khavenson B. Novikov N. Kuleshova 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1993,13(12):705-708
The SIGMA telescope realizes images of the sky in the hard X-ray domain (40 keV–1.3 MeV) through a coded mask system. The extragalactic study was one of the main objectives and has brought new results in our knowledge of the Active Galactic Nuclei behavior at high energy.
In fact, the variability is the most important factor as all these objects have been showed to display strong evolution in intensity or/and spectral shape. Moreover, the discovery of a new hard X-ray source close to 3C273 and probably strongly absorbed below 40–50 keV could have many consequences in the extragalactic field. 相似文献
11.
《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2006,37(10):1909-1912
The random nature of sources (the supernova remnants) leads to the fluctuations of cosmic ray intensity in space and time. We calculate the expected fluctuations in a flat-halo diffusion model for particles with energies from 0.1 to 103 TeV. The data on energy spectra and anisotropy of very high energy protons, nuclei and electrons, and the astronomical data on supernova remnants, the potential sources of cosmic rays, are used to constrain the value of the cosmic-ray diffusion coefficient and its dependence on energy. 相似文献
12.
V. Osherovich E.B. Gliner I. Tzur 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1984,4(8):133-139
The observed difference in electron density between the equatorial plane and the polar direction is compared for three empirical distributions: the Allen distribution, the Saito distribution, and the Saito-Munro-Jackson distribution. It is shown that from 1.5Ro to 5Ro the observed difference in electron density is sufficient to result in a global azimuthal electric current flow around the sun. The dependence of the calculated current density on the radial distance and solar latitude is discussed. 相似文献
13.
14.
Jing-Fan Gao Li-Xin Guo Zheng-Wen Xu Hai-Sheng Zhao Jie Feng 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2018,61(9):2234-2244
Ionospheric inhomogeneous plasma produced by single point chemical release has simple space-time structure, and cannot impact radio wave frequencies higher than Very High Frequency (VHF) band. In order to produce more complicated ionospheric plasma perturbation structure and trigger instabilities phenomena, multiple-point chemical release scheme is presented in this paper. The effects of chemical release on low latitude ionospheric plasma are estimated by linear instability growth rate theory that high growth rate represents high irregularities, ionospheric scintillation occurrence probability and high scintillation intension in scintillation duration. The amplitude scintillations and the phase scintillations of 150?MHz, 400?MHz, and 1000?MHz are calculated based on the theory of multiple phase screen (MPS), when they propagate through the disturbed area. 相似文献
15.
《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2005,35(6):1137-1141
We observed the radio and X-ray source G359.23–0.82, also known as “the Mouse”, with XMM-Newton. The X-ray image of this object shows a point-like source at the Mouse’s “head”, accompanied by a “tail” that extends for about 40″ westward. The morphology is consistent with that observed recently with Chandra [Gaensler, B.M., van der Swaluw, E., Camilo, F., et al. The Mouse that soared: high resolution X-ray imaging of the pulsar-powered bow shock G359.23–0.82, ApJ 616, 383–402, 2004]. The spectrum of the head can be described by a power-law model with a photon index Γ ≃ 1.9. These results confirm that the Mouse is a bow-shock pulsar wind nebula (PWN) powered by PSR J1747–2958. We found that the hydrogen column density toward the Mouse, NH = (2.60 ± 0.09) × 1022 cm−2, is 20%–40% lower than those toward two serendipitously detected X-ray bursters, SLX 1744–299 and SLX 1744–300. At a plausible distance of 5 kpc, the X-ray luminosity of the Mouse, L(0.5–10 keV) = 3.7 × 1034 erg s−1, is 1.5% of the pulsar’s spin-down luminosity. We detected a Type I X-ray burst from SLX 1744–300 and found a possible decrease of NH and persistent luminosity for this source, in comparison with those observed with ROSAT in 1992. 相似文献
16.
Sylvain Chaty 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2013
In this review I first describe the nature of the three kinds of High-Mass X-ray Binaries (HMXBs), accreting through: (i) Be circumstellar disc, (ii) supergiant stellar wind, and (iii) Roche lobe filling supergiants. 相似文献
17.
《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2005,35(6):1177-1180
We present results from the simultaneous observations of an anomalous X-ray pulsar (AXP) 4U 0142 + 61 on Sep. 2003. We used RXTE, Subaru, and UH88 telescopes to cover X-ray, near-infrared (NIR) (JHK′), and optical (BVRI) bands, respectively. We obtained a simultaneous broadband spectrum for the first time among AXPs. We found NIR excess in the spectrum, which may be another component different from the optical one. We also found a R band dip. We discuss the broadband spectrum covering the optical and X-ray bands in the framework of a self absorbed synchrotron emission from the magnetosphere of magnetar. We also discuss about the R band dip feature, which could put a restriction on the emission models of magnetars. 相似文献
18.
《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2005,35(10):1700-1706
Using the Yohkoh Hard X-Ray Telescope (HXT) data, we have examined motions of the hard X-ray (HXR) sources during 72 solar flares occurred from 1991 September to 2001 December. In these flares, we have found 198 intense sources that are presumably the chromospheric footpoints (FPs) of flare loops. The average velocity V and the velocity dispersion σ were determined by a linear regression for these sources. For 80% of them, the ratio of V to 3σ is larger than 1, strongly suggesting that the regular motions of the HXR sources dominate their chaotic motions.For 43 of 72 flares, coalignment of the HXT images with the photospheric magnetograms allows us to consider the HXR sources located on the both sides of the photospheric neutral line (NL) as the FP sources, and to distinguish between three main types of the FP motions. The type I is the motions of the HXR sources preferentially away from and nearly perpendicular to the NL. Less than 5% of the flares show this pattern of motion. In the type II, the sources move mainly along the NL in anti-parallel directions. Such motions have been found in 26% of flares. The type III involves a similar pattern of motions as the type II but all the HXR sources move in the same direction along the NL. Flares of this type constitute 30% of the flares. About 19% of flares can be described as a combination of these basic types. The remaining 20% of flares seem to be more complicated or less regular in the motion scale under consideration. An interpretation of results is suggested. 相似文献
19.
Thomas H. Vonder Haar 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1982,2(6):3-10
A body of techniques that have been developed and planned for use during the Earth Radiation Budget Experiment (ERBE), the International Satellite Cloud Climatology Project (ISCCP), and related climate experiments of the 1980's are reviewed. Validation and verification methods must apply for of satellites. They include: (1) use of a normalization or intercalibration satellite, (2) special intensive observation areas located over ground-truth sites, and (3) monitoring of sun and earth by several satellites and/or several instruments at the same time. Since each climate application area has a hierarchy of user communities, validation techniques vary from very detailed methods to those that simply assure high relative accuracy in detecting space and time variations for climate studies. It is shown that climate experiments generally require more emphasis on long-term stability and internal consistency of satellite data sets than high absolute accuracy. 相似文献
20.
Recent advances in observations and modeling of the solar ultraviolet and X-ray spectral irradiance 总被引:1,自引:0,他引:1
Thomas N. Woods 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2008
There have been significant, recent advances in understanding the solar ultraviolet (UV) and X-ray spectral irradiance from several different satellite missions and from new efforts in modeling the variations of the solar spectral irradiance. The recent satellite missions with solar UV and X-ray spectral irradiance observations include the X-ray Sensor (XRS) aboard the series of NOAA GOES spacecraft, the Upper Atmosphere Research Satellite (UARS), the SOHO Solar EUV Monitor (SEM), the Solar XUV Photometers (SXP) on the Student Nitric Oxide Explorer (SNOE), the Solar EUV Experiment (SEE) aboard the Thermosphere, Ionosphere, Mesosphere, Dynamics, and Energetics (TIMED) satellite, and the Solar Radiation and Climate Experiment (SORCE) satellite. The combination of these measurements is providing new results on the variability of the solar ultraviolet irradiance throughout the ultraviolet range shortward of 200 nm and over a wide range of time scales ranging from years to seconds. The solar UV variations of flares are especially important for space weather applications and upper atmosphere research, and the period of intense solar storms in October–November 2003 has provided a wealth of new information about solar flares. The new efforts in modeling these solar UV spectral irradiance variations range from simple empirical models that use solar proxies to more complicated physics-based models that use emission measure techniques. These new models provide better understanding and insight into why the solar UV irradiance varies, and they can be used at times when solar observations are not available for atmospheric studies. 相似文献