首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
为实现航天事业的跨越式发展和人力资源管理以人为本的理念,就要引入以胜任力特征模型为基础的新的人力资源管理模式,针对航天科研的特点,采用问卷调查为主、行为事件访谈和专家小组座谈为辅的方法,提取优秀科技人员的能力素质特点,形成航天科研领域专业人员胜任力特征模型,并以此为基点更有效地开展人力资源管理与开发工作.  相似文献   

2.
本刊讯中国航天工业总公司新闻力、公室3月10日消息:中国航天工业总公司在总结中国航天这几年来经验教训的基础上,出台了《强化航天科研生产管理的若干意见》,以进一步解放思想,深化改革,加强责任制,确保航天科技工业在社会主义市场经济条件下继续持续、快速、健康地发展  相似文献   

3.
巩固质量工作成果确保完成全年任务航天总公司启动质量振兴计划为巩固1997年强化航天型号产品质量管理工作的成果,确保1998年航天科研生产和试验发射任务的圆满完成,继续贯彻航天总公司《关于强化航天科研生产管理的若干意见》(简称“72条”),航天总公司决...  相似文献   

4.
通过对CMMI和项目管理的研究,结合航天领域的特点,根据航天项目实施CMMI的管理需求.力求开发面向CMMI3级过程改进的航天项目管理Web应用系统。首先对CMMI的项目管理知识体系进行了介绍,在此基础上建立了基于CMMI的航天项目管理系统模型,其次阐述了该系统的总体需求和结构特点,最后对项目管理支持工具进行了探讨,以满足航天企业产品研制过程的全生命周期管理和CMMI3级的要求。  相似文献   

5.
正弘扬新时代科学家精神,恪守科研诚信准则,推动良好学风建设,是国家创新发展战略的重要组成部分,是建设航天强国的重要基础。为贯彻落实习近平总书记关于突出抓好科学诚信建设重要指示精神,聚力推动"十四五"时期航天学术与科研生态环境建设迈上新台阶,激励和引导广大航天青年科技工作者追求真理、勇攀高峰,加快培育促进航天科技事业健康发展的强大精神动力,中国宇航学会向广大会员和航天青年科技工作者发出如下倡议:一、坚持正确方向,弘扬航天精神,做科研诚信的坚定传承者坚持正确的政治方向、科研导向、价值取向,坚定科技报国,不忘初心、牢记使命,  相似文献   

6.
徐清 《航天器工程》2003,12(4):65-67
针对中国空间技术研究院人力资源管理现状和发展战略,提出航天高科技领域人力资本是企业的核心价值,人力资本的含量直接影响企业的效益和兴衰,人力资本与专业队伍建设密不可分。专业队伍建设中注入人力资本管理是迅速提升中国空间技术研究院人力资源管理水平的需要。  相似文献   

7.
《航天员》2007,(3)
中国航天科技集团公司五院五一三所(对外名称为山东航天电子技术研究所)始建于1966年,1986年从山西搬迁到山东烟台。主要从事空间飞行器综合电子领域的数据管理、总体电路、测控、热控、环控生保、星务管理以及机构与结构的研究和开发应用,是山东省唯一一家从事航天高科技研究的整编制科研事业单位,现有在职职工663人。通过GJB9001A-2001标准质量管理体系认证和国家一级保密资格认证,建有国内一流的星船型号研发中心,具有完善的资源(人力资源,设备仪器条件、试验能力等)保障能力,具有雄厚的星船航天飞行器机电产品研制开发能力。  相似文献   

8.
按照总公司1998年航天标准化科研计划纲要,紧密结合航天型号研制和航天科研生产管理工作,坚持三个“面向”和三个“服务”(型号、基层、管理)的原则,突出航天特色,做好航天标准化工作,拟定1998年《航天标准化》报道要点如下。  相似文献   

9.
按照总公司1998年航天标准化科研计划纲要,紧密结合航天型号研制和航天科研生产管理工作,坚持三个“面向”和三个“服务”(型号、基层、管理)的原则,突出航天特色,做好航天标准化工作,拟定1998年《航天标准化》报道要点如下。  相似文献   

10.
工序模型动态集成了航天产品及其零部件的设计、工艺、制造等信息,工序模型构建是航天制造领域三维工艺设计的关键内容,可为控制航天器制造工艺状态、提高加工质量提供使能工具。首先,介绍了正向和逆向两类建模方法的技术原理与特点,将主要建模方法分为特征法、工艺信息法两类;其次,深入分析了切削体造型等不同技术方法的原理与特点;最后,总结了该技术的关键问题并展望其发展方向。本文可为今后航天结构件工序模型自动构建技术的研究提供理论指导与支持。  相似文献   

11.
为解决航天型号任务激增给AIT生产管理体系带来的问题,文章结合当前开展精细化管理工作的要求,与国外先进宇航公司——泰雷兹-阿莱尼亚空间公司就组织机构、科研生产管理、系统级研发及生产能力提升、生产流程进行对标,提出了业务整合、流程再造、优化管理模式的解决措施,探索具有中国航天特色的型号AIT生产管理模式。  相似文献   

12.
针对载人登月舱内失压应急返回过程中,不同条件下航天员穿着舱外航天服维持生存时的热舒适度问题,基于Matlab建立了人-航天服热模型。其中人体热模型基于Fiala模型建立,航天服热模型使用集总参数法建立。经过不同工况的对比,仿真结果与文献数据基本吻合,验证了模型的正确性。在此基础上,基于DTS热舒适度计算方法对不同失压紧急情况下的人体热舒适度进行了分析,得到了舱内不同环境下人体热舒适度、航天服所需散热量和通风气体湿度的变化规律,并提出了系统优化方案,为我国应急舱内压力防护系统的设计和生保方案制定提供了参考。  相似文献   

13.
航天项目资源效用提升方法思考   总被引:1,自引:0,他引:1  
文章根据价值工程的管理思想,以提升我国航天项目价值为最终目标,在航天系统工程技术和项目管理的基础上,从资源配置和使用角度对项目最优价值的实现过程进行了项目资源管理实践的总结,得出通过资源效用提升可以更好地实现项目价值的结论,较为系统地提出了航天项目资源效用提升的有效实施方法。  相似文献   

14.
Space is a high-tech field integrating materials,electronic information,manufacture,energy,medicine and other disciplines.A number of disruptive technologies in various fields will have an important influence in areas such as space industry,scientific research on space and even military space.This article focuses on disruptive technologies exerting enormous influence in the space field based on the qualitative and quantitative research of disruptive technologies.The research and application for disruptive space technology is expected to greatly improve the efficiency of space system,significantly reducing research cost,and to promote a great improvement of space technology level.  相似文献   

15.
In the past, one of the major problems in performing scientific investigations in space has been the high cost of developing, integrating, and transporting scientific experiments into space. The limited resources of unmanned spacecraft, coupled with the requirements for completely automated operations, was another factor contributing to the high costs of scientific research in space. In previous space missions after developing, integrating and transporting costly experiments into space and obtaining successful data, the experiment facility and spacecraft have been lost forever, because they could not be returned to earth. The objective of this paper is to present how the utilization of the Spacelab System will result in cost benefits to the scientific community, and significantly reduce the cost of space operations from previous space programs.The following approach was used to quantify the cost benefits of using the Spacelab System to greatly reduce the operational costs of scientific research in space. An analysis was made of the series of activities required to combine individual scientific experiments into an integrated payload that is compatible with the Space Transportation System (STS). These activities, including Shuttle and Spacelab integration, communications and data processing, launch support requirements, and flight operations were analyzed to indicate how this new space system, when compared with previous space systems, will reduce the cost of space research. It will be shown that utilization of the Spacelab modular design, standard payload interfaces, optional Mission Dependent Equipment (MDE), and standard services, such as the Experiment Computer Operating System (ECOS), allow the user many more services than previous programs, at significantly lower costs. In addition, the missions will also be analyzed to relate their cost benefit contributions to space scientific research.The analytical tools that are being developed at MSFC in the form of computer programs that can rapidly analyze experiment to Spacelab interfaces will be discussed to show how these tools allow the Spacelab integrator to economically establish the payload compatibility of a Spacelab mission.The information used in this paper has been assimilated from the actual experience gained in integrating over 50 highly complex, scientific experiments that will fly on the Spacelab first and second missions. In addition, this paper described the work being done at the Marshall Space Flight Center (MSFC) to define the analytical integration tools and techniques required to economically and efficiently integrate a wide variety of Spacelab payloads and missions. The conclusions reached in this study are based on the actual experience gained at MSFC in its roles of Spacelab integration and mission managers for the first three Spacelab missions. The results of this paper will clearly show that the cost benefits of the Spacelab system will greatly reduce the costs and increase the opportunities for scientific investigation from space.  相似文献   

16.
D R Criswell 《Acta Astronautica》1981,8(9-10):1161-1171
Mankind has evolved in the biosphere from essentially another animal to the level that his industries and societies are powerful components of the life-cycles of Earth. Terrestrial industrial experience can be extended to the use of matter from the Moon and other non-terrestrial sources to create permanent habitats and industry in space. Space stations in low Earth orbit and small bases on the Moon can be the foci of early space industries for learning how to grow in space with local resources. Several near term and long range research topics appropriate to permanent human occupancy of space are reviewed.  相似文献   

17.
太萍  林益明 《航天器工程》2010,19(3):102-107
以提升项目资源管理能力为目标,在系统工程技术和项目管理的基础上,从资源的配置和使用角度对项目资源的配置管理方法进行了探索研究,提出了完善项目资源配置管理的方法。为促进航天项目管理能力的提升提供参考。  相似文献   

18.
Pellis NR  North RM 《Acta Astronautica》2004,55(3-9):589-598
The activation of the US Laboratory Module "Destiny" on the International Space Station (ISS) in February 2001 launched a new era in microgravity research. Destiny provides the environment to conduct long-term microgravity research utilizing human intervention to assess, report, and modify experiments real time. As the only available pressurized space platform, ISS maximizes today's scientific resources and substantially increases the opportunity to obtain much longed-for answers on the effects of microgravity and long-term exposure to space. In addition, it evokes unexpected questions and results while experiments are still being conducted, affording time for changes and further investigation. While building and outfitting the ISS is the main priority during the current ISS assembly phase, seven different space station crews have already spent more than 2000 crew hours on approximately 80 scientific investigations, technology development activities, and educational demonstrations.  相似文献   

19.
Historically, advocates of solar system exploration have disagreed over whether program goals could be entirely satisfied by robotic missions. Scientists tend to argue that robotic exploration is most cost-effective. However, the human space program has a great deal of support in the general public, thereby enabling the scientific element of exploration to be larger than it might be as a stand-alone activity. A comprehensive strategy of exploration needs a strong robotic component complementing and supporting human missions. Robots are needed for precursor missions, for crew support on planetary surfaces, and for probing dangerous environments. Robotic field assistants can provide mobility, access to scientific sites, data acquisition, visualization of the environment, precision operations, sample acquisition and analysis, and expertise to human explorers. As long as space exploration depends on public funds, space exploration must include an appropriate mix of human and robotic activity.  相似文献   

20.
Scientists have conducted studies involving human spaceflight crews for over three decades. These studies have progressed from simple observations before and after each flight to sophisticated experiments during flights of several weeks up to several months. The findings from these experiments are available in the scientific literature. Management of these flight experiments has grown into a system fashioned from the Apollo Program style, focusing on budgeting, scheduling and allocation of human and material resources. While these areas remain important to the future, the International Space Station (ISS) requires that the Life Sciences spaceflight experiments expand the existing project management methodology. The use of telescience with state-of-the-art information technology and the multi-national crews and investigators challenges the former management processes. Actually conducting experiments on board the ISS will be an enormous undertaking and International Agreements and Working Groups will be essential in giving guidance to the flight project management Teams forged in this matrix environment must be competent to make decisions and qualified to work with the array of engineers, scientists, and the spaceflight crews. In order to undertake this complex task, data systems not previously used for these purposes must be adapted so that the investigators and the project management personnel can all share in important information as soon as it is available. The utilization of telescience and distributed experiment operations will allow the investigator to remain involved in their experiment as well as to understand the numerous issues faced by other elements of the program. The complexity in formation and management of project teams will be a new kind of challenge for international science programs. Meeting that challenge is essential to assure success of the International Space Station as a laboratory in space.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号