首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Effects of polarization and resolution on SAR ATR   总被引:3,自引:0,他引:3  
Lincoln Laboratory is investigating the detection and classification of stationary ground targets using high resolution, fully polarimetric, synthetic aperture radar (SAR) imagery. A study is summarized in which data collected by the Lincoln Laboratory 33 GHz SAR were used to perform a comprehensive comparison of automatic target recognition (ATR) performance for several polarization/resolution combinations. The Lincoln Laboratory baseline ATR algorithm suite was used, and was optimized for each polarization/resolution case. Both the HH polarization alone and the optimal combination of HH, HV, and VV were evaluated; the resolutions evaluated were 1 ft/spl times/1 ft and 1 m/spl times/1 m. The data set used for this study contained approximately 74 km/sup 2/ of clutter (56 km/sup 2/ of mixed clutter plus 18 km/sup 2/ of highly cultural clutter) and 136 tactical target images (divided equally between tanks and howitzers).  相似文献   

2.
Studies of target detection algorithms that use polarimetric radardata   总被引:2,自引:0,他引:2  
Algorithms are described which make use of polarimetric radar information in the detection and discrimination of targets in a ground clutter background. The optimal polarimetric detector (OPD) is derived. This algorithm processes the complete polarization scattering matrix (PSM) and provides the best possible detection performance from polarimetric radar data. Also derived is the best linear polarimetric detector, the polarimetric matched filter (PMF), and the structure of this detector is related to simple polarimetric target types. New polarimetric target and clutter models are described and used to predict the performance of the OPD and the PME. The performance of these algorithms is compared with that of simpler detectors that use only amplitude information to detect targets. The ability to discriminate between target types by exploring differences in polarimetric properties is discussed  相似文献   

3.
It is shown that in a situation where a radar target is distant enough from the radar and is included in a natural or artificial clutter environment in such a manner that the conventional detection methods fail, it is possible to improve the radar detection performance by using appropriate signal processing on two orthogonal polarization states. A CFAR (constant false alarm rate) polarimetric detection system based on the study of the polarization difference between clutter and target is proposed. Since the polarization state of the clutter echoes fluctuates slowly from cell to cell, an autoregressive model can be applied to the components of the polarization vector to predict the detection thresholds needed to follow the polarization state variation. The detection thresholds are determined to maintain a false alarm probability equal to 10-6. The presence of a target registers as a significant variation of the estimation error of the polarization vector. Results obtained from measurements of simple and canonical targets with artificial clutter are presented, and these results validate the principle of polarimetric detection  相似文献   

4.
In this article, a new reduced-dimensional adaptive processing algorithm based on joint pixels sum-difference data for clutter rejection is proposed. The sum-difference data are obtained by orthogonal projection of the joint pixels data of different synthetic aperture radar (SAR) images generated by a multi-satellite radar system. In the sense of statistical expectation, the sum-differ- ence data contain the common and different information of the SAR images. Therefore, the objective of clutter cancellation can be achieved by adaptive processing. Moreover, based on the residual image after clutter rejection, statistical analysis of constant false-alarm rate (CFAR) detection of moving targets is also presented. Simulation results demonstrate the effectiveness and robustness of the proposed algorithm even with heterogeneous clutter and image co-registration error.  相似文献   

5.
Optimal speckle reduction in polarimetric SAR imagery   总被引:9,自引:0,他引:9  
Speckle is a major cause of degradation in synthetic aperture radar (SAR) imagery. With the availability of fully polarimetric SAR data, it is possible to use the three complex elements (HH, HV, VV) of the polarimetric scattering matrix to reduce speckle. The optimal method for combining the elements of the scattering matrix to minimize image speckle is derived, and the solution is shown to be a polarimetric whitening filter (PWF). A simulation of spatially correlated, K-distributed, fully polarimetric clutter is then used to compare the PWF with other, suboptimal speckle-reduction methods. Target detection performance of the PWF, span, and single-channel |HH|2 detectors is compared with that of the optimal polarimetric detector (OPD). A novel, constant-false-alarm-rate (CFAR) detector (the adaptive PWF) is as a simple alternative to the OPD for detecting targets in clutter. This algorithm estimates the polarization covariance of the clutter, uses the covariance to construct the minimum-speckle image, and then tests for the presence of a target. An exact theoretical analysis of the adaptive PWF is presented; the algorithm is shown to have detection performance comparable with that of the OPD  相似文献   

6.
Most of the current forward-looking ground-penetrating radar (FLGPR) systems use conventional delay-and-sum (DAS) based methods to form radar images for detection of the target (such as a landmine). However, DAS is a data-independent approach which is known to suffer from low resolution and poor interference and clutter rejection capability. We present a data-adaptive imaging approach for FLGPR image formation based on APES (amplitude and phase estimation) and rank-deficient RCB (robust Capon beamforming). Due to the data-adaptive nature of both APES and RCB, our approach has better resolution and much better interference and clutter rejection capability than the standard DAS-based imaging methods. The excellent performance of the proposed method is demonstrated using experimental data collected via two FLGPR systems recently developed by PSI (Planning Systems, Inc.) and SRI (Stanford Research Institute).  相似文献   

7.
The derivation of a completely adaptive polarimetric coherent scheme to detect a radar target against a Gaussian background is presented. A previously proposed Generalized Likelihood Ratio Test (GLRT) polarimetric detector is extended to the case of a general number of channels; this exploits the polarimetric characteristics of the received radar echoes to improve the detection performance. Together with the fully adaptive scheme, a model-based detector is derived that has a lower estimation loss. A complete theoretical expression is derived for the detection performance of both proposed polarimetric detectors. They are shown to have Constant False Alarm Rate (CFAR) when operating against Gaussian clutter, but to be sensitive to deviations from the Gaussian statistic. The application to recorded radar data demonstrates the performance improvement achievable in practice  相似文献   

8.
建立了雷达模拟器中目标、地物杂波、海杂波、气象杂波的信号强度计算模型,根据相对运动关系解算出各目标与杂波信号的强度,并按时间流程存储在对应的数据表中,从而信号源将产生相应强度的信号注入雷达模拟台,以便后端雷达模拟台能在雷达威力覆盖范围内准确地显示出目标与杂波强度变化。通过仿真软件在雷达训练模拟器中的功能测试,实现了目标与杂波仿真效果,满足了雷达模拟训练的要求。  相似文献   

9.
Generalized radar clutter model   总被引:2,自引:0,他引:2  
A commonly used density model for radar clutter is chi-square for power, or, equivalently, Rayleigh for amplitude. However, for many modern high resolution radar systems, this density underestimates the tails of the measured clutter density. Log normal and Weibull distributions have proved to be better suited for the clutter in these high resolution radars. Generalizing the chi-square density by replacing it with the noncentral chi-square density and allowing the mean power level (the noncentrality parameter) to vary, we can both suitably shape the clutter density to produce larger tails and model the fluctuation of the average clutter power, commonly referred to as speckle. The resulting form, although appearing cumbersome, readily allows for efficient and accurate computations of the probability of detection in clutter  相似文献   

10.
给出了一种机动多目标雷达视频信号模拟器的软硬件设计方案,它可实时输出所需的多个动目标雷达视频信号,雷达信号的类型、目标的数量、目标的回波特性、目标的运动特性、杂波的类型及参数等均可方便地进行设置。该模拟器可满足各种雷达信号处理算法(如杂波抑制、恒虚警检测、动目标跟踪、多基地数据融合等)的测试与效果分析,以及对雷达信号处理机等进行性能调试与测试的需要。  相似文献   

11.
An earlier correspondence reported experiments which suggested that the visibility of a target in clutter could be improved through stereoscopic viewing of high resolution radar images. Here we provide a more thorough discussion on the application of stereo for improving radar detection and recognition. Experiments are reported which confirm and extend the earlier reported results. An example of the use of stereo in a practical system is provided which demonstrates the potential for acquisition of high quality radar stereograms  相似文献   

12.
We propose a model for generating low-frequency synthetic aperture radar (SAR) clutter that relates model parameters to physical characteristics of the scene. The model includes both distributed scattering and large-amplitude discrete clutter responses. The model also incorporates the SAR imaging process, which introduces correlation among image pixels. The model may be used to generate synthetic clutter for a range of environmental operating conditions for use in target detection performance evaluation of the radar and automatic target detection/recognition algorithms. We derive a statistical representation of the proposed clutter model's pixel amplitudes and compare with measured data from the CARABAS-II SAR. Simulated clutter images capture the structure and amplitude responses seen in the measured data. A statistical analysis shows an order of magnitude improvement in model fit error compared with standard maximum-likelihood (ML) density fitting methods.  相似文献   

13.
One of the most straightforward techniques for detecting changes in an image involves forming the difference between a test image and a reference image. Unfortunately, such a technique can give rise to a large number of false alarms due to the statistical variability of the underlying pixel values, as has been well established within the radar community over the years. One method for dealing with this large number of false alarms involves forming the ratio, rather than the difference, of two synthetic aperture radar (SAR) images. We introduce a modified version of the standard differencing technique to overcome problems associated with pixel value variability. The new (modified) differencing approach utilizes assumptions about the statistics of the image background and the object being sought (target) to reduce the number of false alarms due to highly variable background (clutter) regions, and it includes the standard ratio test as a special case. In fact, we find that the modified difference approach can also be viewed as a modified version of the ratio test with a threshold that varies as a function of the background clutter radar cross section (RCS). We also present an abridged, albeit suboptimal, version of this approach that eliminates assumptions regarding the target's probability distribution, and we analyze both of the approaches. We then compare these results with those obtained with a standard ratio test, and illustrate how the modified difference test reduces to the ratio test under certain operating conditions. The abridged version of the modified approach is applied to high resolution synthetic aperture radar imagery and compared with results obtained with the classical differencing technique, and following this, the modified difference technique is compared with the standard ratio test. Results suggest that under appropriate conditions the abridged, modified technique can successfully detect changes without the need for any image segmentation.  相似文献   

14.
This series papers describes analyses of a foliage penetration experiment undertaken by MIT Lincoln Laboratory to assess the ability of synthetic aperture radar (SAR) to detect targets under trees. Data were taken using the NASA/JPL UHF, L-, C-band fully polarimetric SAR over a forested area in Maine in July 1990. Future experiments are planned to measure the polarimetric properties of clutter and targets using the latest ultrawideband sensors with submeter resolutions and fully polarimetric data collection capabilities  相似文献   

15.
For pt. I see ibid., vol. 37, no. 4, pp. 1194-1206 (2001).This paper presents the derivation of a polarimetric coherent adaptive scheme to detect a radar target against a non-Gaussian background. This completes the results presented in Part I for the Gaussian background. A Texture Free-Generalized Likelihood Ratio Test (TF-GLRT) detector is derived that exploits the polarimetric characteristics of the received radar echoes to improve the detection performance. The proposed polarimetric detector is shown to have Constant False Alarm Rate (CFAR) when operating against compound-Gaussian clutter with unknown parameters. Its performance is fully characterized by both theoretical analysis and simulation. Moreover, the application to recorded radar data demonstrates the performance improvement achievable in practice  相似文献   

16.
HRR Detector for Slow-Moving Targets in Sea Clutter   总被引:1,自引:0,他引:1  
The radar detection of targets in the presence of sea clutter has historically relied upon the radial velocity of targets with respect to the radar platform either by exploiting the relative target Dopplers (for targets with sufficient radial velocity) or by discerning the paths targets traverse from scan to scan. For targets with little to no radial velocity component, though, it can become quite difficult to differentiate targets from the surrounding sea clutter. This paper addresses the detection of slow-moving targets in sea clutter using a high resolution radar (HRR) such that the target has perceptible extent in range. Under the assumption of completely random sea clutter spikes based on an epsiv-contaminated mixture model with the signal and clutter powers known, optimal detection performance results from using the likelihood ratio test (LRT). However, for realistic sea clutter, the clutter spikes tend to be a localized phenomenon. Based upon observations from real radar data measurements, a heuristic approach exploiting a salient aspect of the idealized LRT is developed which is shown to perform well when applied to real measured sea clutter.  相似文献   

17.
The environment and radar operation simulator (EROS) is a hardware system whose function is to produce realistic synthetic radar backscatter, incorporating both target and clutter. The simulator is electrically connected to a subject radar and responds in real time to the radar's antenna scan angle by producing the correct composite video signal.  相似文献   

18.
In synthetic aperture radar a large linear phased array is formed from the rapid movement of a single element through each position in the array. Storage and coherent combining of the successive radar echoes are central to the array-forming process. Optical processing is the most common technique because of the efficiency with which Fourier transformation may be accomplished with simple optics. Real-time operation, however, requires all-electronic processing, which is difficult to accomplish because of the huge quantity of data to be manipulated. Dynamic range compression by hard limiting may ease the problem by reducing the number of bits per frame. The effects of hard limiting are analyzed in this paper. It is shown that large targets simultaneously illuminated by the radar antenna will produce image targets or ghosts displaced in angle. Statistically homogeneous clutter will "linearize" the hard-limited receiver and suppress the ghosts without loss in contrast, as does thermal noise if it is larger than the target echoes. Pulse compression reduces the probability of images from prominent targets. Judicious choice of the pulse-compression waveform is a powerful tool for destroying coherent buildup of images from all large targets not in the same range resolution cell. Linear FM, the most common choice, unfortunately does not exhibit this desirable property.  相似文献   

19.
雷达图像的生成在训练模拟器视景仿真研究中意义重大.在对海作战仿真中,海杂波仿真是对海雷达图像仿真研究的重点.文章在比较海杂波概率分布模型的基础上,探讨了复合K分布实现方法,并应用Vega和Creator等软件实现海杂波视景仿真,生成了由海杂波形成的雷达图像,取得了较好效果,具有一定的借鉴意义.  相似文献   

20.
In the problem of stationary target identification (STI) via millimeter wave (MMW) seeker radars in heavy clutter environments, it is often necessary to use nonparametric identification procedures, as detailed parametric models of clutter and target returns are generally unavailable. Neural networks provide an attractive approach to perform nonparametric identification. However, when identifying low-probability events, the computational overhead associated with training a neural network can become excessive. This is because low-probability events must be adequately represented in the training sample. We present a modified backpropagation training algorithm based on a likelihood ratio weighting function (LRWF) to train the neural network using a much smaller training set than that required using the standard backpropagation algorithm This algorithm is closely related to the importance sampling technique used in digital communication systems to obtain probability of error estimates by using a much smaller number of simulation runs than what is required with standard Monte Carlo simulation. The modified backpropagation technique results in a significant reduction in computational overhead in training the network, resulting from a substantial reduction in the size of the training set required to achieve a given level of performance. We demonstrate the performance of the algorithm on simulated data for the STI problem in MMW radar  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号