共查询到20条相似文献,搜索用时 15 毫秒
1.
The magnetotail and substorms 总被引:5,自引:0,他引:5
The tail plays a very active and important role in substorms. Magnetic flux eroded from the dayside magnetosphere is stored here. As more and more flux is transported to the magnetotail and stored, the boundary of the tail flares more, the field strength in the tail increases, and the currents strengthen and move closer to the Earth. Further, the plasma sheet thins and the magnetic flux crossing the neutral sheet lessens. At the onset of the expansion phase, the stored magnetic flux is returned from the tail and energy is deposited in the magnetosphere and ionosphere. During the expansion phase of isolated substorms, the flaring angle and the lobe field strength decrease, the plasma sheet thickens and more magnetic flux crosses the neutral sheet.In this review, we discuss the experimental evidence for these processes and present a phenomenological or qualitative model of the substorm sequence. In this model, the flux transport is driven by the merging of the magnetospheric and interplanetary magnetic fields. During the growth phase of substorms the merging rate on the dayside magnetosphere exceeds the reconnection rate in the neutral sheet. In order to remove the oversupply of magnetic flux in the tail, a neutral point forms in the near earth portion of the tail. If the new reconnection rate exceeds the dayside merging rate, then an isolated substorm results. However, a situation can occur in which dayside merging and tail reconnection are in equilibrium. The observed polar cap electric field and its correlation with the interplanetary magnetic field is found to be in accord with open magnetospheric models. 相似文献
2.
R. W. Fredricks 《Space Science Reviews》1975,17(2-4):449-480
Wave-particle effects are implicit in most models of radial diffusion and energization of Van Allen belt particles; they were explicitly used in the wave turbulence model for trapped particle precipitation and trapped flux limitations by Kennel and Petschek, Cornwall and by many others. Liemohn used wave-particle interactions to work out a theory of path-integrated whistler amplification process to explain the lack of large per-hop attenuation of multiple-hop LF whistlers.Others have now used wave-particle interactions to construct theories of ELF and VLF chorus. In the present paper we shall review the observations and some of the pertinent theoretical interpretations of wave-particle effects as they relate to substorm and storm-time phenomena. If substorms develop as a result of magnetic merging, then it seems clear that wave-particle interactions in the dissipative or so-called diffusion region of the reconnection zone may be of great importance. The plasma sheet thinning and flow towards the Earth lead inevitably to the development of particle distribution functions that contain free energy in a pitch-angle anisotropy. Such free energy can be released via plasma wave instabilities. The subsequent wave-particle interactions can result in both strong and weak diffusion of particles into loss cones with consequent precipitation fluxes into the auroral zone. Ring current proton spectra also should be unstable against various plasma instabilities with consequent ring current decay and precipitations. Wave-particle interactions must play some important roles in auroral arcs, electrojets and other phenomena related to substorms. These aspects of wave-Paticle interaction will be covered 相似文献
3.
T. R. Sanderson R. G. Marsden K. -P. Wenzel A. Balogh R. J. Forsyth B. E. Goldstein 《Space Science Reviews》1995,72(1-2):291-296
We present observations of energetic ions from the Ulysses COSPIN Low Energy Telescope in the mid and high-latitude regions of the heliosphere prior to and during the first polar pass of the Ulysses spacecraft. After the encounter with Jupiter, Ulysses started on its journey out-of-the-ecliptic. Between 13°S and 29°S the spacecraft sampled the solar wind from both the streamer belt and the polar coronal hole. Here, co-rotating magnetic structures with forward and reverse shocks and containing accelerated energetic ions were observed.At latitudes greater than 29°S, Ulysses was completely immersed in the solar wind from the polar coronal hole. Here the co-rotating magnetic structures were weaker, and in general had only reverse shocks, but were still capable of accelerating the energetic ions, albeit with reduced intensity. The most recent results show that beyond 50°S, very few if any, reverse shocks are observed. However, accelerated ions from magnetic interaction regions are still observed. We report also on an intensity enhancement at 50°S due to the passage of a high-latitude CME. 相似文献
4.
Interplanetary origin of geomagnetic storms 总被引:8,自引:0,他引:8
Gonzalez Walter D. Tsurutani Bruce T. Clúa de Gonzalez Alicia L. 《Space Science Reviews》1999,88(3-4):529-562
Around solar maximum, the dominant interplanetary phenomena causing intense magnetic storms (Dst<−100 nT) are the interplanetary
manifestations of fast coronal mass ejections (CMEs). Two interplanetary structures are important for the development of storms,
involving intense southward IMFs: the sheath region just behind the forward shock, and the CME ejecta itself. Whereas the
initial phase of a storm is caused by the increase in plasma ram pressure associated with the increase in density and speed
at and behind the shock (accompanied by a sudden impulse [SI] at Earth), the storm main phase is due to southward IMFs. If
the fields are southward in both of the sheath and solar ejecta, two-step main phase storms can result and the storm intensity
can be higher. The storm recovery phase begins when the IMF turns less southward, with delays of ≈1–2 hours, and has typically
a decay time of 10 hours. For CMEs involving clouds the intensity of the core magnetic field and the amplitude of the speed
of the cloud seems to be related, with a tendency that clouds which move at higher speeds also posses higher core magnetic
field strengths, thus both contributing to the development of intense storms since those two parameters are important factors
in genering the solar wind-magnetosphere coupling via the reconnection process.
During solar minimum, high speed streams from coronal holes dominate the interplanetary medium activity. The high-density,
low-speed streams associated with the heliospheric current sheet (HCS) plasma impinging upon the Earth's magnetosphere cause
positive Dst values (storm initial phases if followed by main phases). In the absence of shocks, SIs are infrequent during
this phase of the solar cycle. High-field regions called Corotating Interaction Regions (CIRs) are mainly created by the fast
stream (emanating from a coronal hole) interaction with the HCS plasma sheet. However, because the Bz component is typically highly fluctuating within the CIRs, the main phases of the resultant magnetic storms typically have
highly irregular profiles and are weaker. Storm recovery phases during this phase of the solar cycle are also quite different
in that they can last from many days to weeks. The southward magnetic field (Bs) component of Alfvén waves in the high speed stream proper cause intermittent reconnection, intermittent substorm activity,
and sporadic injections of plasma sheet energy into the outer portion of the ring current, prolonging its final decay to quiet
day values. This continuous auroral activity is called High Intensity Long Duration Continuous AE Activity (HILDCAAs).
Possible interplanetary mechanisms for the creation of very intense magnetic storms are discussed. We examine the effects
of a combination of a long-duration southward sheath magnetic field, followed by a magnetic cloud Bs event. We also consider the effects of interplanetary shock events on the sheath plasma. Examination of profiles of very
intense storms from 1957 to the present indicate that double, and sometimes triple, IMF Bs events are important causes of such events. We also discuss evidence that magnetic clouds with very intense core magnetic
fields tend to have large velocities, thus implying large amplitude interplanetary electric fields that can drive very intense
storms. Finally, we argue that a combination of complex interplanetary structures, involving in rare occasions the interplanetary
manifestations of subsequent CMEs, can lead to extremely intense storms.
This revised version was published online in June 2006 with corrections to the Cover Date. 相似文献
5.
E. N. Parker 《Space Science Reviews》1962,1(1):62-99
This paper is intended as a critical review of current ideas concerning the mechanisms responsible for the geomagnetic storm.The dynamical theory of the geomagnetic storm phenomenon is formulated as a problem in elasticity. The observed variations in the field are the strains produced by particle stresses exerted by gases in interplanetary space, by gases enmeshed in the field, and by the gases in the ionosphere. The stresses exerted by interplanetary gases are principally inward, resulting in the initial phase increase of the horizontal component. The stresses exerted by gases enmeshed in the field are principally outward, resulting in the main phase decrease of the horizontal component. The transient sudden commencement is a hydromagnetic wave phenomenon.The main phase is most simply explained by the shock heating of the ions to kev energies at 3 – 5 R
E
during the active phase of the storm. The recovery follows then from charge exchange with the ambient neutral hydrogen. The predicted more rapid recovery at sunspot minimum has been verified observationally.This work was supported by the National Aeronautics and Space Administration under grant NASA-NsG-96-60. 相似文献
6.
V. M. Mishin 《Space Science Reviews》1991,57(3-4):237-337
The magnetogram inversion technique (MIT) is based upon recordings of geomagnetic variations at the worldwide network of ground-based magnetometers. MIT ensures a calculation of a global spatial distribution of the electric field, currents and Joule heating in the ionosphere. Variant MIT-2 provides, additionally, continuous monitoring of the following parameters: Poynting vector flux from the solar wind into the magnetosphere (); power, both dissipated and accumulated in the magnetosphere; magnetic flux in the open tail; and the magnetotail length (l
T) (distance between the dayside and nightside neutral points in the Dungey model). Using MIT-2 and data of direct measurements in the solar wind, an analysis is made of a number of substorms, and a new scenario of substorms is suggested. The scenario includes the convection model, the model with a neutral line and the model of magnetosphere-ionosphere coupling (outside the current sheet), i.e., the three known models. A brief review is given of these and some other substorms models. A new element in the scenario is the strong positive feedback in the primary generator circuit, which ensures growth of the ratio = /
Aby an order of magnitude or more during the substorms. Here
Ais the Pointing vector flux in the Akasofu-Perrault approximation, i.e., without the feedback taken into account. The growth of during the substorm is caused only by the feedback effect. It is assumed that the feedback arises due to an elongation of the magnetotail, i.e., a growth of l
Tby a factor of (23) during the substorm.In the active phase of substorm, a part (the first active phase) has been identified, where the principal role in the energetics is played by the feedback mechanism and the external energy source (although the internal source plus reconnection inside the plasma sheet make a marked contribution). In the second active phase (expansion) the external generator (solar wind) is switched off, and the main role is now played by the internal energy source (the tail magnetic field and ionospheric wind energy).Models of DP-2 DP-1 transitions are also considered, as well as the magnetospheric substorm-solar flare analogy. 相似文献
7.
Simulation of three-dimensional solar wind disturbances and resulting geomagnetic storms 总被引:3,自引:0,他引:3
A kinematic method of representing the three-dimensional solar wind flow is devised by taking into account qualitatively the stream-stream interaction which leads to the formation of a shock pair. Solar wind particles move radially away from the Sun, satisfying the frozen-magnetic field condition. The uniqueness of the present approach is that one can incorporate both theoretical and observational results by adjusting the parameters involved and that a self-consistent data set can be simulated. One can then infer the three-dimensional structure of the solar wind which is vital in understanding the interaction between the solar wind and the magnetosphere, and it is for this reason that the present kinematic method is devised. In the first part of this paper, the present kinematic method is described in detail by demonstrating that the following solar wind features can be simulated: (i) Variations of the solar wind quantities (such as the solar wind speed, the density and the IMF vector), associated with the solar rotation, at the Earth; (ii) the solar wind flow pattern in the meridian planes; (iii) the three-dimensional structure of the corotating interaction region (CIR); and (iv) the three-dimensional structure of the warped solar current sheet.In Section 2, the three-dimensional structure of solar wind disturbances are studied by introducing a flare-generated high speed stream into the two-stream model of the solar wind developed in Section 1. The treatment of the stream-stream interaction is generalized to deal with a flare-generated high speed stream, yielding a shock pair. The shock pair causes three-dimensional distortion of the solar current sheet as it propagates outward from the Sun. It is shown that a set of characteristic time variations of the solar wind speed, density, the interplanetary magnetic field magnitude B and angles (theta) and gf (phi) result at the time of the passage at the location of the Earth for a given set of flare conditions. These quantities allow us to compute the solar wind-magnetosphere energy coupling function . Time variations of the two geomagnetic indices AE and Dst are then estimated from . The simulated geomagnetic storms are compared with observed ones.In the third part, it is shown that recurrent geomagnetic storms can reasonably be reproduced, if fluctuating components of the interplanetary magnetic field (IMF) are superposed on the kinematic model of the solar wind developed in the first part. As an example, we simulate the fluctuating components by linearly polarized Alfvén waves and by random variations of the IMF angle (theta). Characteristics of the simulated and observed geomagnetic storms are discussed in terms of the simulated and observed AE and Dst indices. If the fluctuating components of the IMF can generally be identified as hydromagnetic waves, they may be an important cause for individual magnetospheric substorms, while the IMF magnitude B and the solar wind speed V modulate partially the intensity of magnetospheric substorms and storms. 相似文献
8.
9.
Risto Pirjola 《Space Science Reviews》1983,35(2):185-193
The electric field associated with geomagnetic disturbances gives rise to potential differences at the Earth's surface. Thus, currents are induced in power transmission lines which are earthed at both ends through transformers. The currents vary so slowly with time that they can be considered direct currents. The phenomenon has been studied in Finland for some years, and in connection with this research induced currents have been measured at four places by recording the current from the transformer neutral into the Earth. These measurements are considered in this paper. In addition, theoretical calculation of the potential differences and of the currents is discussed.Paper presented at the Fifth International Wrocaw Symposium on Electromagnetic Compatibility, Wrocaw (Poland), 17–19 September, 1980. 相似文献
10.
A review is presented of the interaction of the solar wind with the magnetic field of the earth. The material is developed primarily from an observational point of view. The early observations are covered through late 1963, with primary emphasis on the sunward interaction region. The historical review of the early results is discussed in terms of the significant contributions of each satellite observation and in the light of our present concept of the solar wind-geomagnetic field interaction. Subsequent to 1963 the observations tend to overlap such that a strictly historical treatment is not tractable and the material is presented from a phenomenological approach. The daytime and night-time hemispheres are covered separately in terms of the significant and separable phenomena which dominate the structure and dynamics of these two regions. Satellite and deep space probe data are compared with relevant theory. Further observational eflorts needed to improve our understanding of the details of the solar wind-geomagnetic field interaction are also discussed. 相似文献
11.
We present data on the solar irradiance as derived from a number of sources. An attempt was made to bring these data onto a uniform scale. The results are presented in Table IV and Figure 6. Summation of fluxes at all wavelengths yields a figure of 1357.826 W m-2 for the solar constant. Estimates are made of the solar flux variations due to flares, active regions (slowly varying component), solar rotation and the 11-year cycle.Solar activity does not produce a significant variation in the value of the solar constant. Nevertheless, variations in the X-ray and extreme ultraviolet portions of the solar flux may be several orders of magnitude during solar activity, especially at times of major flares. It is well established that these short wavelength flux enhancements cause significant changes in the terrestrial ionosphere. 相似文献
12.
G. Rostoker S. I. Akasofu W. Baumjohann Y. Kamide R. L. McPherron 《Space Science Reviews》1988,46(1-2):93-111
This paper presents the consensus arrived at by the authors with respect to the contributions to the substorm expansive phase of direct energy input from the solar wind and from energy stored in the magnetotail which is released in a sometimes unpredictable manner. Two physical processes, neither of which can be ignored, are considered to be of importance in the dispensation of the energy input from the solar wind. One of these is the driven process in which energy, supplied from the solar wind, is directly dissipated in the ionosphere with the only clearly definable delay being due to the inductance of the magnetosphere-ionosphere system. The other is the loading-unloading process in which energy from the solar wind is first stored in the magnetotail and then is suddenly released to be deposited in the ionosphere as a consequence of external changes in the interplanetary medium or internal triggering processes. Although the driven process appears to be more dominant on a statistical basis in terms of solar wind-geomagnetic activity relationships, one or the other of the two above processes may dominate for any individual cases. Moreover, the two processes may operate simultaneously during a given phase of the substorm, e.g., the magnetotail may experience loading as the driven system increases in strength. Thus, in our approach, substorms are described in terms of physical processes which we infer to be operative in the magnetosphere and the terminology of the past (e.g., phases) is related to those inferred physical processes. The pattern of substorm development in response to changes in the interplanetary medium is presented for a canonical isolated substorm.Now at Max-Planck-Institut für Physik und Astrophysik, Institut für Extraterrestrische Physik, D-8046 Garching, F.R.G. 相似文献
13.
14.
Many observations of geomagnetic cutoff phenomena and their implications with respect to the dynamics of charged particles in the geomagnetic field are discussed. Störmer's analytic treatment of the motion of charged particles in a dipole field is briefly reviewed, as are the approximate treatments of charged particle motions, first developed by Alfvén, which were to find successful application to the more complex fields now known to exist in the magnetosphere. In conclusion, the present understanding of geomagnetic cutoffs, together with some remaining areas of uncertainty are examined. 相似文献
15.
U. Villante 《Space Science Reviews》1977,20(2):123-143
Pioneer 7 and Pioneer 8 spacecraft provided the only direct observations of the geomagnetic tail at geocentric distances as large as 1000R
e and 500R
e respectively. The presence of a low density plasma flow in the region of expected tail and the intermittent and short duration character of the tail encounters suggested in the past a distant tail structure remarkably different from its near-earth and cislunar shape. However the recent discovery of the plasma mantle allows to interpret the Pioneer observations in terms of a distant tail that possibly is still preserving most of its near-earth characteristics. In particular, the region of tail encounters and the magnitude and direction of the observed magnetic field might be consistent with a cylindrical tail with a modestly increased cross-section. Neutral sheet observations also appear to be consistent with the most recent bidimensional tail models. Finally, as in the cislunar region, the double peaked proton energy spectra can be interpreted in terms of a partial intermingling of plasma sheet and plasma mantle populations.Also at Laboratorio Plasma nello Spazio, CNR, Frascati. 相似文献
16.
Marcia Neugebauer 《Space Science Reviews》1975,17(2-4):221-254
This paper summarizes space probe observations relevant to the determination of the large-scale, three-dimensional structure of the solar wind and its solar cycle variations. Observations between 0.6 and 5 AU reveal very little change in the average solar-wind velocity, but a pronounced decrease in the spread of velocities about the average. The velocity changes may be accompanied by a transfer of energy from the electrons to the protons. The mass flux falls off approximately as the inverse square of distance as expected for spherically symmetric flow. Measurements of the interplanetary magnetic field show that the spiral angle is well defined over this entire range of distances, but there is some evidence that the spiral may wind up more slowly with distance from the Sun than predicted by Parker's model. The variances or noise in the field and plasma have also been measured as a function of radial distance.During the rising portion of the solar-activity cycle, the solar-wind velocity showed a pronounced positive correlation with solar latitude over the range ±7°. Several other plasma parameters which have been found generally to correlate (or anticorrelate) with velocity also showed a latitude variation; these parameters include the density, percent helium, and azimuthal flow direction. The average polarity and the north-south component of the magnetic field depend on the solar hemisphere in which the measurements are made.Dependence on the phase of the solar-activity cycle can be found in the data on the number of high speed streams, the proton density, the percent helium, and the magnetic-field strength and polarity. 相似文献
17.
18.
We review some aspects of low latitudes (L≤2) geomagnetic field variations associated with magnetospheric pulsations as well
as with continuous and impulsive variations of the solar wind (SW) pressure.
This revised version was published online in August 2006 with corrections to the Cover Date. 相似文献
19.
《燃气涡轮试验与研究》2016,(2):51-56
从FAR-33的历史修正案出发,结合民用大涵道比航空发动机的发展,从统计学角度剖析了FAR-33历史演变规律并概括出5大修订原因——科技水平进步、灾难性事故、标准过于苛刻、叙述或定义不清晰以及国际一致性。同时,将一种规章约束边界的概念引入研究中,认为修订原因可通过规章约束边界和安全边界的关系来反映。结果显示,民用航空大涵道比发动机的发展有着与FAR-33历史上4次重大修订相近的发展规律和时间间隔(10~13年),新型航空发动机的研制促进了适航规章的升级,而修订的适航规章则指导着下代发动机的研制。预计FAR-33的下一次重大修订时间为2017~2020年,修订内容涉及目前发展的型号,如LEAP-X等。 相似文献
20.
The Pioneer 10, Pioneer 11, and Voyager 2 spacecraft were launched in 1972, 1974, and 1977, respectively. While these three spacecraft are all at compartively low heliographic latitudes compared with Ulysses, their observation span almost two solar cycles, a range of heliocentric distances from 1 to 57 AU, and provide a unique insight into the long-term variability of the global structure of the solar wind. We examine the spatial and temporal variation of average solar wind parameters and fluxes. Our obsevations suggest that the global structure of the outer heliosphere during the declining phase of the solar cycle at heliographic latitudes up to 17.5°N was charaterized by two competing phenomena: 1) a large-scale increase of solar wind density, temperature, mass flux, dynamic pressure, kinetic energy flux, and thermal enery flux with heliographic latitude, similar to the large-scale latitudinal gradient of velocity seen in IPS observations, 2) a small-scale decrease in velocity and temperature, and increase in density near the heliospheric current sheet, which is associated with a band of low speed, low temperature, and high density solar wind similar to that observed in the inner heliosphere. 相似文献