首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The world's first aeronautical satellite communication experiments, conducted at L-band frequencies using a commercial aircraft, are described. An airborne antenna with electronically steerable beam and communication equipment was installed in a B-747F freighter flying over transoceanic flight routes. The satellite used in these experiments is the Engineering Test Satellite-Five (ETS-V). During the test period, various experiments, such as antenna pattern measurements, transmission performances, and voice quality evaluation were conducted. As the airborne antenna is the key component for the aeronautical satellite communication system, emphasis has been placed on antenna characteristics. Its performance is found to be closely related to the fading characteristics in low-elevation areas and to transmission error performance  相似文献   

2.
3.
4.
5.
An ionospheric scintillation prediction model and display were developed for the Command Post Modem/Processor (CPM/P) for demonstration purposes. The CPM/P equations were then incorporated in a Lotus 1-2-3 spreadsheet to allow predictions to be made using a desktop computer instead of the CPM/P equipment. Using this information, the operator can improve the message throughput of a UHF satellite communications system  相似文献   

6.
7.
The performance of an airborne phased-array antenna, which was developed and evaluated onboard a commercial aircraft using the Engineering Test Satellite V (ETS-V), is reported. The system requirements and the antenna configuration that satisfies them are described. The radiation pattern, gain and axial ratio, noise temperature and ratio of gain to noise temperature, and environmental characteristics are presented. The results obtained by the flight experiments demonstrate that the performance of the antenna is the same as that on the ground, so that the antenna is suitable for installation in an aircraft for satellite communications  相似文献   

8.
In this paper,a Doppler scaling fast Fourier transform (Doppler-FFT) algorithm for filter bank multi-carrier (FBMC) is proposed,which can efficiently eliminate the impact of the Doppler scaling in satellite communications.By introducing a Doppler scaling factor into the butterfly structure of the fast Fourier transform (FFT) algorithm,the proposed algorithm eliminates the differences between the Doppler shifts of the received subcarriers,and maintains the same order of computational complexity compared to that of the traditional FFT.In the process of using the new method,the Doppler scaling should be estimated by calculating the orbital data in advance.Thus,the inter-symbol interference (ISI) and the inter-carrier interference (ICI) can be completely eliminated,and the signal to interference and noise ratio (SINR) will not be affected.Simulation results also show that the proposed algorithm can achieve a 0.4 dB performance gain compared to the frequency domain equalization (FDE) algorithm in satellite communications.  相似文献   

9.
Dual-band frequency diversity seems to be an effective fade countermeasure to rain-induced attenuation in satellite communications above 20 GHz. This method, particularly suited for satellites operating in two frequency bands, typically Ka band and C or Ku band, achieves very low levels of outage probability especially where the rain fades are severe. A theoretical analysis of a frequency diversity system is performed to evaluate the amount of reserve capacity needed to counteract fading in a satellite network. The problems that arise in implementing adaptive fade countermeasures because of the dynamic characteristics of fading are discussed, and the results of the simulations performed using the attenuation time series at 11.6 GHz, measured with the Sirio satellite throughout four years, are presented  相似文献   

10.
Smart antennas are becoming one of the promising technologies to meet the rapidly increasing demands for more capacity of satellite communication systems. A main component in a smart antenna system is beamforming. Because of the limitations of analog beamforming, digital beamforming will be employed in future satellite communication systems. We evaluate the performance of various digital beamforming strategies proposed in the literature for satellite communications: 1) single fixed beam/single user, 2) single fixed beam/multiple users, 3) single adaptive beam/single user, and 4) single Chebyshev dynamic beam/multiple users. Multiple criteria including coverage, system capacity, signal-to-interference-plus-noise ratio (SINR), and computation complexity are used to evaluate these satellite communication beamforming strategies. In particular, a Ka-band satellite communication system is used to address the various issues of these beamforming strategies. For the adaptive beamforming approach, subarray structure is used to obtain the weights of a large 2D antenna array, and a globally convergent recurrent neural network (RNN) is proposed to realize the adaptive beamforming algorithm in parallel. The new subarray-based neural beamforming algorithm can reduce the computation complexity greatly, and is more effective than the conventional least mean square (LMS) beamforming approach. It is shown that the single adaptive beam/single user approach has the highest system capacity.  相似文献   

11.
The scientific mission DAVID (Data and Video Interactive Distribution) of the Italian Space Agency (ASI) will pioneer the use of the W-band for a challenging telecommunications experiment. The unavailability of channel measurements and the technological limitations in that frequency range imply a system assessment based on channel extrapolation and a wise error control strategy. In that frame, a system approach is proposed that will allow the exploitation of the W-band for high capacity satellite communications. The results obtained through that approach in the assessment of the DAVID W-band experiment are provided and their perspectives identified and discussed.  相似文献   

12.
13.
The design and development of a system for inferring the position of terrestrial satellite uplink stations using existing domestic satellites with minimal disruption to normal satellite operation are described. Two methods are presented by which a quantity measured at a terrestrial receiving site is mapped into a curve of possible uplink locations on the Earth's surface. One method involves measuring differential time delays of a single uplink signal observed through two adjacent spacecraft. The other uses a short baseline interferometer composed of the two cross-polarized and spatially separated antenna feeds aboard an affected satellite. A unique location is obtained by using an appropriate combination of the two methods. A system for measurement of the required differential delays and phases and experimental work performed to demonstrate the feasibility of the location methods are described  相似文献   

14.
Describes the development of a system for inferring the position of uplink ground stations, using existing domestic satellites, with minimal disruption of normal operation. The system uses the differential time delay of a single uplink signal passing through two adjacent spacecraft to infer the relative position of the uplink transmitter. A system for the measurement of such differential time delays is described. Since this technique alone does not provide an unambiguous determination of uplink transmitter location, the use of an interferometer to resolve such ambiguities is discussed  相似文献   

15.
The communications link and system aspects of active phased arrays that are used in multiple-beam satellite systems are assessed through measurements and analysis. Three link parameters are investigated and their effects on the overall carrier-to-interference ratio (CIR) are quantified. The first parameter is the intermodulation components that are generated at the nonlinear amplifier outputs and contribute to well-formed interference in the far-field radiation of the array. The second is the bit-error ratio (BER) degradation due to the multi-carrier operation of the active array. Measurement results are shown to demonstrate this effect. The third link parameter is the cochannel interference caused by frequency reuse in multiple-beam systems. The paper starts by reviewing early developments of phased arrays for multiple-beam satellite communications applications. A key component in these developments is the modular monolithic microwave integrated circuit (MMIC) beam-forming matrices that generate a number of simultaneous and independently digitally controlled beams  相似文献   

16.
The authors present a novel, real-time angular motion estimation technique using a linear Gaussian estimator, and the outputs of linear accelerometers and gyroscopes, to assess the actual angular velocity of a rigid body in three-dimensional (3D) space. The method obtains the covariances of the random actual 3D angular velocity, the angular velocity measurement, and the measurement noise from the time averages of the outputs of an array of nine linear accelerometers and the outputs of three orthogonal gyroscopes. These statistics are used by the estimator to calculate the angular velocity of the rigid body in 3D space. The multisensor technique performance is evaluated through a computer simulation. Results indicate that the method leads to more accurate angular velocity values than are obtained conventionally.<>  相似文献   

17.
18.
19.
This paper proposes an electromagnetic coil topology and its control strategy, which can be incorporated into the electromagnetic docking device to achieve relative pose control in satellite docking. The target satellite has a main coil; the chaser satellite possesses a main coil of the same size accompanied by six and four evenly arranged secondary coils inside and outside the main coil,respectively. The coil on the target satellite is DC energized, while the currents in the coils of the chaser...  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号