首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
ACTIVE SPACECRAFT POTENTIAL CONTROL   总被引:1,自引:0,他引:1  
Charging of the outer surface or of the entire structure of a spacecraft in orbit can have a severe impact on the scientific output of the instruments. Typical floating potentials for magnetospheric satellites (from +1 to several tens of volts in sunlight) make it practically impossible to measure the cold (several eV) component of the ambient plasma. Effects of spacecraft charging are reduced by an entirely conductive surface of the spacecraft and by active charge neutralisation, which in the case of Cluster only deals with a positive potential. The Cluster spacecraft are instrumented with ion emitters of the liquid-metal ion-source type, which will produce indium ions at 5 to 8 keV energy. The operating principle is field evaporation of indium in the apex field of a needle. The advantages are low power consumption, compactness and high mass efficiency. The ion current will be adjusted in a feedback loop with instruments measuring the spacecraft potential (EFW and PEACE). A stand-alone mode is also foreseen as a back-up. The design and principles of the operation of the active spacecraft potential control instrument (ASPOC) are presented in detail. Flight experience with a similar instrument on the Geotail spacecraft is outlined.  相似文献   

2.
The New Horizons Spacecraft   总被引:1,自引:0,他引:1  
The New Horizons spacecraft was launched on 19 January 2006. The spacecraft was designed to provide a platform for seven instruments designated by the science team to collect and return data from Pluto in 2015. The design meets the requirements established by the National Aeronautics and Space Administration (NASA) Announcement of Opportunity AO-OSS-01. The design drew on heritage from previous missions developed at The Johns Hopkins University Applied Physics Laboratory (APL) and other missions such as Ulysses. The trajectory design imposed constraints on mass and structural strength to meet the high launch acceleration consistent with meeting the AO requirement of returning data prior to the year 2020. The spacecraft subsystems were designed to meet tight resource allocations (mass and power) yet provide the necessary control and data handling finesse to support data collection and return when the one-way light time during the Pluto fly-by is 4.5 hours. Missions to the outer regions of the solar system (where the solar irradiance is 1/1000 of the level near the Earth) require a radioisotope thermoelectric generator (RTG) to supply electrical power. One RTG was available for use by New Horizons. To accommodate this constraint, the spacecraft electronics were designed to operate on approximately 200 W. The travel time to Pluto put additional demands on system reliability. Only after a flight time of approximately 10 years would the desired data be collected and returned to Earth. This represents the longest flight duration prior to the return of primary science data for any mission by NASA. The spacecraft system architecture provides sufficient redundancy to meet this requirement with a probability of mission success of greater than 0.85. The spacecraft is now on its way to Pluto, with an arrival date of 14 July 2015. Initial in-flight tests have verified that the spacecraft will meet the design requirements.  相似文献   

3.
The work presented in this paper concerns the accurate On-Ground Attitude (OGA) reconstruction for the astrometry spacecraft Gaia in the presence of disturbance and of control torques acting on the spacecraft. The reconstruction of the expected environmental torques which influence the spacecraft dynamics will be also investigated. The telemetry data from the spacecraft will include the on-board real-time attitude, which is of order of several arcsec. This raw attitude is the starting point for the further attitude reconstruction. The OGA will use the inputs from the field coordinates of known stars (attitude stars) and also the field coordinate differences of objects on the Sky Mapper (SM) and Astrometric Field (AF) payload instruments to improve this raw attitude. The on-board attitude determination uses a Kalman Filter (KF) to minimize the attitude errors and produce a more accurate attitude estimation than the pure star tracker measurement. Therefore the first approach for the OGA will be an adapted version of KF. Furthermore, we will design a batch least squares algorithm to investigate how to obtain a more accurate OGA estimation. Finally, a comparison between these different attitude determination techniques in terms of accuracy, robustness, speed and memory required will be evaluated in order to choose the best attitude algorithm for the OGA. The expected resulting accuracy for the OGA determination will be on the order of milli-arcsec.  相似文献   

4.
The Mercury Laser Altimeter (MLA) is one of the payload science instruments on the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) mission, which launched on August 3, 2004. The altimeter will measure the round-trip time of flight of transmitted laser pulses reflected from the surface of the planet that, in combination with the spacecraft orbit position and pointing data, gives a high-precision measurement of surface topography referenced to Mercury’s center of mass. MLA will sample the planet’s surface to within a 1-m range error when the line-of-sight range to Mercury is less than 1,200 km under spacecraft nadir pointing or the slant range is less than 800 km. The altimeter measurements will be used to determine the planet’s forced physical librations by tracking the motion of large-scale topographic features as a function of time. MLA’s laser pulse energy monitor and the echo pulse energy estimate will provide an active measurement of the surface reflectivity at 1,064 nm. This paper describes the instrument design, prelaunch testing, calibration, and results of postlaunch testing.  相似文献   

5.
The magnetometer on the POLAR Spacecraft is a high precision instrument designed to measure the magnetic fields at both high and low altitudes in the polar magnetosphere in 3 ranges of 700, 5700, and 47000 nT. This instrument will be used to investigate the behavior of fieldaligned current systems and the role they play in the acceleration of particles, and it will be used to study the dynamic fields in the polar cusp, magnetosphere, and magnetosheath. It will measure the coupling between the shocked magnetosheath plasma and the near polar cusp magnetosphere where much of the solar wind magnetosphere coupling is thought to take place. Moreover, it will provide measurements critical to the interpretation of data from other instruments. The instrument design has been influenced by the needs of the other investigations for immediately useable magnetic field data and high rate (100+vectors s–1) data distributed on the spacecraft. Data to the ground includes measurements at 10 vectors per second over the entire orbit plus snapshots of 100 vectors per second data. The design provides a fully redundant instrument with enhanced measurement capabilities that can be used when available spacecraft power permits.  相似文献   

6.
The Juno Gravity Science Instrument   总被引:1,自引:0,他引:1  
The Juno mission’s primary science objectives include the investigation of Jupiter interior structure via the determination of its gravitational field. Juno will provide more accurate determination of Jupiter’s gravity harmonics that will provide new constraints on interior structure models. Juno will also measure the gravitational response from tides raised on Jupiter by Galilean satellites. This is accomplished by utilizing Gravity Science instrumentation to support measurements of the Doppler shift of the Juno radio signal by NASA’s Deep Space Network at two radio frequencies. The Doppler data measure the changes in the spacecraft velocity in the direction to Earth caused by the Jupiter gravity field. Doppler measurements at X-band (\(\sim 8\) GHz) are supported by the spacecraft telecommunications subsystem for command and telemetry and are used for spacecraft navigation as well as Gravity Science. The spacecraft also includes a Ka-band (\(\sim 32\) GHz) translator and amplifier specifically for the Gravity Science investigation contributed by the Italian Space Agency. The use of two radio frequencies allows for improved accuracy by removal of noise due to charged particles along the radio signal path.  相似文献   

7.
Nearly three decades after the Mariner 10 spacecraft’s third and final targeted Mercury flyby, the 3 August 2004 launch of the MESSENGER (MErcury Surface, Space ENvironment, GEochemistry, and Ranging) spacecraft began a new phase of exploration of the closest planet to our Sun. In order to ensure that the spacecraft had sufficient time for pre-launch testing, the NASA Discovery Program mission to orbit Mercury experienced launch delays that required utilization of the most complex of three possible mission profiles in 2004. During the 7.6-year mission, the spacecraft’s trajectory will include six planetary flybys (including three of Mercury between January 2008 and September 2009), dozens of trajectory-correction maneuvers (TCMs), and a year in orbit around Mercury. Members of the mission design and navigation teams optimize the spacecraft’s trajectory, specify TCM requirements, and predict and reconstruct the spacecraft’s orbit. These primary mission design and navigation responsibilities are closely coordinated with spacecraft design limitations, operational constraints, availability of ground-based tracking stations, and science objectives. A few days after the spacecraft enters Mercury orbit in mid-March 2011, the orbit will have an 80° inclination relative to Mercury’s equator, a 200-km minimum altitude over 60°N latitude, and a 12-hour period. In order to accommodate science goals that require long durations during Mercury orbit without trajectory adjustments, pairs of orbit-correction maneuvers are scheduled every 88 days (once per Mercury year).  相似文献   

8.
航天器自动化测试语言研究   总被引:1,自引:0,他引:1  
余丹  马世龙  李先军  孙波  叶钢 《航空学报》2010,31(2):290-300
航天器测试语言是支撑航天器自动化测试的形式体系及航天器测试过程标准,在当前多航天器批产网络化测试的新需求下,测试语言标准体系研究对于提高航天器测试自动化水平和保障测试过程安全具有重要意义。通过对现有典型航天器测试语言的全面分析和比较,总结出基本特征,并结合当前先进的网络计算技术,提出了我国航天器测试语言发展的目标和方向,同时针对国内航天器测试语言研究设计工作的不足,给出一种航天器测试语言CATOL(China Aerospace Test and Operation Language)。该研究对提高我国航天器测试业务规范水平和测试人员的工作效率、促进航天器测试自动化研究的发展将起到一定的推动作用。  相似文献   

9.
10.
During the first half of 1996, the European Space Agency (ESA) will launch a unique flotilla of spacecraft to study the interaction between the solar wind and the Earth's magnetosphere in unprecedented detail. The Cluster mission was first proposed to the Agency in late 1982 and was selected, together with SOHO, as the Solar Terrestrial Science Programme (STSP), the first cornerstone of ESA's Horizon 2000 Programme. It is a complex four-spacecraft mission designed to carry out three-dimensional measurements of the magnetosphere, covering both large- and small-scale phenomena in the sunward and tail regions. The mission is a first for ESA in a number of ways: – the first time that four identical spacecraft have been launched on a single launch vehicle, – the first time that ESA has built spacecraft in true series production and operated them as a single group, – the first time that European scientific institutes have produced a series of up to five instruments with full intercalibration, and – the first launch of the Agency's new heavy launch vehicle Ariane-5. The article gives an overview of this unique mission and the requirements that governed the spacecraft design. It then describes in detail the resulting design and how the particular engineering challenges posed by the series production of four identical spacecraft and sets of scientific instruments were met by the combined efforts of the ESA Project Team, Industry and the experiment teams.  相似文献   

11.
PEACE: A PLASMA ELECTRON AND CURRENT EXPERIMENT   总被引:3,自引:0,他引:3  
An electron analyser to measure the three-dimensional velocity distribution of electrons in the energy range from 0.59 eV to 26.4 keV on the four spacecraft of the Cluster mission is described. The instrument consists of two sensors with hemispherical electrostatic energy analysers with a position-sensitive microchannel plate detectors placed to view radially on opposite sides of the spacecraft. The intrinsic energy resolutions of the two sensors are 12.7% and 16.5% full width at half maximum. Their angular resolutions are 2.8° and 5.3° respectively in an azimuthal direction and 15° in a polar direction. The two sensors will normally measure in different overlapping energy ranges and will scan the distribution in half a spacecraft rotation or 2 s in the overlapped range. While this is the fastest time resolution for complete distributions, partial distributions can be recorded in as little as 62.5 ms and angular distributions at a fixed energy in 7.8 ms. The dynamic range of the instrument is sufficient to provide accurate measurements of the main known populations from the tail lobe to the plasmasheet and the solar wind. While the basic structure of the instrument is conventional, special attention has been paid in the design to improving the precision of the instrument so that a relative accuracy of the order of 1% could be attained in flight in order to measure the gradients between the four spacecraft accurately; to decreasing the minimum energy covered by this technique from 10 eV down to 1 eV; and to providing good three dimensional distributions.  相似文献   

12.
Gibson  W.C.  Burch  J.L.  Scherrer  J.R.  Tapley  M.B.  Killough  R.L.  Volpe  F.A.  Davis  W.D.  Vaccarello  D.C.  Grismore  G.  Sakkas  D.  Housten  S.J. 《Space Science Reviews》2000,91(1-2):15-50
The Imager for Magnetopause-to-Aurora Global Exploration (IMAGE) mission will be the first of the new Medium-class Explorer (MIDEX) missions to fly. IMAGE will utilize a combination of ultraviolet and neutral atom imaging instruments plus an RF sounder to map and image the temporal and spatial features of the magnetosphere. The eight science sensors are mounted to a single deckplate. The deckplate is enveloped in an eight-sided spacecraft bus, 225 cm across the flats, developed by Lockheed Martin Missiles and Space Corporation. Constructed of laminated aluminum honeycomb panels, covered extensively by Gallium Arsenide solar cells, the spacecraft structure is designed to withstand the launch loads of a Delta 7326-9.5 ELV. Attitude control is via a single magnetic torque rod and passive nutation damper with aspect information provided by a star camera, sun sensor, and three-axis magnetometer. A single S-band transponder provides telemetry and command functionality. Interfaces between the self-contained payload and the spacecraft are limited to MIL-STD-1553 and power. This paper lists the requirements that drove the design of the IMAGE Observatory and the implementation that met the requirements.  相似文献   

13.
Deep Impact: A Large-Scale Active Experiment on a Cometary Nucleus   总被引:1,自引:0,他引:1  
The Deep Impact mission will provide the first data on the interior of a cometary nucleus and a comparison of those data with data on the surface. Two spacecraft, an impactor and a flyby spacecraft, will arrive at comet 9P/Tempel 1 on 4 July 2005 to create and observe the formation and final properties of a large crater that is predicted to be approximately 30-m deep with the dimensions of a football stadium. The flyby and impactor instruments will yield images and near infrared spectra (1–5 μm) of the surface at unprecedented spatial resolutions both before and after the impact of a 350-kg spacecraft at 10.2 km/s. These data will provide unique information on the structure of the nucleus near the surface and its chemical composition. They will also used to interpret the evolutionary effects on remote sensing data and will indicate how those data can be used to better constrain conditions in the early solar system.  相似文献   

14.
15.
Lanzerotti  L.J.  Krimigis  S.M.  Decker  R.B.  Hawkins  S.E.  Gold  R.E.  Roelof  E.C.  Armstrong  T.P. 《Space Science Reviews》2001,97(1-4):243-248
Charged particle instrumentation that will be flying on six spacecraft in the heliosphere between 1 and 90 AU during 2001–2004 will provide a global view of the interplanetary medium that has not heretofore been available. Comparative analyses of the data that will be obtained will provide new understanding of the global evolution of heliospheric features such as traveling shock waves, coronal mass ejections, solar activity-produced particle injections, and anomalous cosmic rays. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

16.
ACE Spacecraft     
Chiu  M.C.  Von-Mehlem  U.I.  Willey  C.E.  Betenbaugh  T.M.  Maynard  J.J.  Krein  J.A.  Conde  R.F.  Gray  W.T.  Hunt  J.W.  Mosher  L.E.  McCullough  M.G.  Panneton  P.E.  Staiger  J.P.  Rodberg  E.H. 《Space Science Reviews》1998,86(1-4):257-284
The Johns Hopkins University Applied Physics Laboratory (JHU/APL) was responsible for the design and fabrication of the ACE spacecraft to accommodate the ACE Mission requirements and for the integration, test, and launch support for the entire ACE Observatory. The primary ACE Mission includes a significant number of science instruments - nine - whose diverse requirements had to be factored into the overall spacecraft bus design. Secondary missions for monitoring space weather and measuring launch vibration environments were also accommodated within the spacecraft design. Substantial coordination and cooperation were required between the spacecraft and instrument engineers, and all requirements were met. Overall, the spacecraft was kept as simple as possible in meeting requirements to achieve a highly reliable and low-cost design. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

17.
The distant shores of Mars were reached by numerous U.S. and Russian spacecraft throughout the 1960s to mid 1970s. Nearly 20 years have passed since those successful missions which orbited and landed on the Martian surface. Two Soviet probes headed for the planet in July, 1988, but later failed. In August 1993, the U.S. Mars Observer suddenly went silent just three days before it was to enter orbit around the planet and was never heard from again. In late 1996, there will be renewed activity on the launch pads with three probes departing for the red planet: 1) The U.S. Mars Global Surveyor will be launched in November on a Delta II rocket and will orbit the planet for global mapping purposes; 2) Russia's Mars '96 mission, scheduled to fly in November on a Proton launcher, consists of an orbiter, two small stations which will land on the Martian surface, and two penetrators that will plow into the terrain; and finally, 3) a U.S. Discovery-class spacecraft, the Mars Pathfinder, has a December launch date atop a Delta II booster. The mission features a lander and a microrover that will travel short distances over Martian territory. These missions usher in a new phase of Mars exploration, setting the stage for an unprecedented volley of spacecraft that will orbit around, land on, drive across, and perhaps fly at low altitudes over the planet.  相似文献   

18.
19.
A broad, international, cooperative effort is under way to study and develop quantitative understanding of the fundamental electrodynamic processes in the solar-terrestrial environment. Japan, Europe, Russia, the United States, and other countries are providing spacecraft to be placed in key regions with the aim of utilizing coordinated, multipoint spaceflight measurements, ground-based observations, and theory to study the global energy budget of geospace. The U.S. contribution began in the late 1970's as the OPEN program (Origin of Plasmas in Earth's Neighborhood) and was reconstituted in the 1980's as the Global Geospace Science (GGS) program. The international effort, known in the U. S. as the International Solar Terrestrial Physics program (ISTP), began with the launch of the Japanese GEOTAIL in 1992, and will continue with the U. S. spacecraft WIND and POLAR in 1994–1995, and the European four-spacecraft Cluster fleet and its Solar and Heliospheric Observatory (SOHO) in 1995. Russia will launch its Interball set of four spacecraft in 1995. The Inter-Agency Consultative Group (IACG) is promoting the coordination of the spacecraft observations by means of scientific campaigns aimed at addressing scientific questions that can only be answered by observations from the multiple spacecraft. The Solar Terrestrial Energy Program (STEP) is coordinating the involvement of the broad scientific community and especially the correlative ground observations.  相似文献   

20.
The Rosetta spacecraft has been successfully launched on 2nd March 2004 to its new target comet 67 P/Churyumov-Gerasimenko. The science objectives of the Rosetta Radio Science Investigations (RSI) experiment address fundamental aspects of cometary physics such as the mass and bulk density of the nucleus, its gravity field, its interplanetary orbit perturbed by nongravitational forces, its size and shape, its internal structure, the composition and roughness of the nucleus surface, the abundance of large dust grains, the plasma content in the coma and the combined dust and gas mass flux. The masses of two asteroids, Steins and Lutetia, shall be determined during flybys in 2008 and 2010, respectively. Secondary objectives are the radio sounding of the solar corona during the superior conjunctions of the spacecraft with the Sun during the cruise phase. The radio carrier links of the spacecraft Telemetry, Tracking and Command (TT&C) subsystem between the orbiter and the Earth will be used for these investigations. An Ultrastable oscillator (USO) connected to both transponders of the radio subsystem serves as a stable frequency reference source for both radio downlinks at X-band (8.4 GHz) and S-band (2.3 GHz) in the one-way mode. The simultaneous and coherent dual-frequency downlinks via the High Gain Antenna (HGA) permit separation of contributions from the classical Doppler shift and the dispersive media effects caused by the motion of the spacecraft with respect to the Earth and the propagation of the signals through the dispersive media, respectively. The investigation relies on the observation of the phase, amplitude, polarization and propagation times of radio signals transmitted from the spacecraft and received with ground station antennas on Earth. The radio signals are affected by the medium through which the signals propagate (atmospheres, ionospheres, interplanetary medium, solar corona), by the gravitational influence of the planet on the spacecraft and finally by the performance of the various systems involved both on the spacecraft and on ground.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号