首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 93 毫秒
1.
以航空航天结构制造领域为背景,介绍了目前较为成熟并具有一定范围应用的增材制造技术,包括激光增材制造、电子束增材制造和丝材电弧增材制造等,阐述和对比了该技术的研究现状和技术特点。研究表明与传统加工生产方式相比较,增材制造技术生产方式具有明显的经济性。  相似文献   

2.
微气孔是电弧增材制造2219铝合金面临的主要问题。采用Advanced CMT+P(变极性CMT+脉冲)熔滴过渡模式,研究了EP/EN(正负半周波数)、扫描速度、送丝速度等电弧增材工艺参数对成形2219铝合金微气孔缺陷的影响规律。结果表明:通过改变EP/EN、扫描速度、送丝速度等参数调控热输入可影响气孔率;在热输入较低时,气孔以形核和长大为主,随热输入增加微气孔数量增多、尺寸增大;在热输入较高时,气孔逸出开始占优,随热输入增加微气孔数量减少;在热输入低至230.5或高至439.5 J/mm时,平均气孔率均可降低至0.2%以下。  相似文献   

3.
复杂高筋薄壁构件在航天飞行器中被广泛应用,整体制造是实现这类构件轻量化的重要途径,也是当前制造领域最具有挑战的工程难题之一,其中旋压-增材复合制造代表了复杂高筋薄壁构件整体制造的前沿。近几年,本文作者研究团队在复杂航天薄壁筒段旋压-增材复合制造方向上开展了较为系统的研究工作。从内筋薄壁筒段旋压成形和等材-增材复合制造两个角度对国内外学者研究工作进行总结;同时,从内筋铝合金筒段旋压断裂机制与组织演变规律、筒壁内增材热力学行为与组织调控、旋压-增材复合制造工艺等方面介绍了当前初步研究成果,并对旋压-增材复合制造技术的发展进行了展望。比较全面地梳理了复杂高筋薄壁筒段复合制造技术现状和发展趋势,为复杂薄壁构件整体制造技术研究提供指导。  相似文献   

4.
7xxx系铝合金电弧增材制造过程中因组织不均匀与元素偏析导致成形试样性能较低,针对这一问题,对电弧增材制造7075铝合金薄壁件进行固溶+人工时效热处理(T6态),对比研究了热处理前后微观组织与力学性能的变化。结果表明,7075铝合金沉积态试样中晶粒被网状共晶组织包围,Zn、Mg和Cu元素在晶界富集,产生元素偏析。经过T6态热处理后,大部分共晶组织溶解,元素分布的不均匀性得到明显改善。与沉积态试样相比,热处理后试样的抗拉强度与断后伸长率增加,抗拉强度从(279.4±5.3)MPa提高至(493.9±10.2)MPa,断后伸长率从3.78%±0.35%增加到9.66%±1.70%。T6态试样的拉伸断口表面密布着韧窝,断裂方式为韧性断裂。  相似文献   

5.
增材制造技术是一种逐点、逐线、逐面增加材料而形成三维复杂结构零件的近净成形工艺,3D打印技术日渐成熟,其所制备出的产品组织结构致密、性能稳定。近年来,学者们将增材制造技术应用于智能材料的打印,实现该技术由空间维度到时间维度的扩展。本文重点介绍了3D打印与4D打印的研究现状与发展前景,以期为从事该领域的工作人员提供借鉴。  相似文献   

6.
采用HPVP-GTAW电弧作为热源进行Al-6.3Cu合金的电弧填丝增材制造,试验研究送丝速度和运动速度对成形层高和层宽的影响,并对比分析常规VP-GTAW和HPVP-GTAW两种热源对构件组织性能的影响。结果表明:协调调节WFS和TS可在获得良好成形外观的同时实现对构件尺寸的有效控制;Al-6.3Cu合金构件内部组织呈现出典型层状分布特征,且各部位组织特征相类似,主要由等轴晶粒组成;原始状态下WAAM构件具有很好的塑性,但其强度较低,与常规VP-GTAW相比,HPVP-GTAW有助于提高增材构件的强度。  相似文献   

7.
本文系统总结了英美两个代表性研究机构在资源投入、管理运作、协同创新等方面的实践经验,指出了我国制造业创新中心建设应强化政府引导,加强协同创新,完善产业支撑体系。  相似文献   

8.
在过去的20年中,陶瓷黏结剂喷射增材制造技术已经成为制造复杂陶瓷构件的一种革命性方法,特别是在航空航天、生物医疗、电子信息等多个关键领域展现出显著的应用潜力与价值。本文全面回顾了此技术的基础原理、材料选择、工艺流程、性能特征及制造缺陷,并针对未来的挑战和目标进行了深入展望。文中首先详细概述了该技术的成型原理,对其与其他增材制造工艺的优势和局限进行了对比分析;然后综合总结了国际研究进展,重点包括陶瓷粉末的性能与处理、黏结剂的配置与其在粉床中的动力学行为、工艺参数的调整与后续致密化工艺,并讨论了这些因素如何影响初坯和最终制件的密度、孔隙结构、组织特性及性能;最后,基于现有研究成果和应用局限,本文对粉末原材料、黏结剂的设计、工艺参数优化等方面提出了前瞻性的发展建议。本篇综述旨在为理解和应用陶瓷黏结剂喷射增材制造提供全面的科学研究和工程实践指导。  相似文献   

9.
国外增材制造技术标准分析   总被引:1,自引:0,他引:1  
简要介绍了国外增材制造标准的发展现状。对比分析了国外已颁布的增材制造技术产品标准的适用范围,工艺特点,产品的组织、性能和内部质量要求,质量控制流程及要求等。提出了发展我国增材制造技术标准的建议。  相似文献   

10.
近年国外发展起一套新的超声波增材制造技术,它采用大功率超声能量,以金属箔材作为原材料,利用金属层与层之间振动摩擦产生的热量,促进界面间金属原子相互扩散并形成界面固态物理冶金结合,从而实现金属带材逐层叠加的增材制造成形,同时将固结增材过程与数控铣削等减材工艺相结合,实现了超声波成形与制造一体化的超声波增材制造技术.与高能束金属快速成形技术相比,超声波增材制造技术具有温度低、无变形、速度快、绿色环保等优点,适合复杂叠层零部件成形、加工一体化智能制造,在航空航天、武器装备、能源、交通等尖端领域有着重要的应用前景.本文介绍了超声波增材制造技术的原理及发展,以及该技术在叠层复合材料的制备和零部件制造等方面的应用,同时介绍了国内超声波增材制造技术的研究进展.  相似文献   

11.
增材制造技术通过材料逐层打印制备结构,为复杂构件制造提供了新的成形方式。拓扑优化因不依赖于初始构型的选择,可设计出传统理念难以获得的创新构型,已成为航空航天和高端装备领域高性能、轻量化结构设计的重要手段。拓扑优化与增材制造有机融合,充分发挥各自优势和潜力,在现代制造业中展现出广阔应用前景。回顾了近年来关于增材制造与拓扑优化技术融合研究的主要内容和应用成果,包括以材料结构一体化为核心的多尺度/多层级结构优化设计、以设计制造一体化为核心的考虑增材制造工艺约束的优化方法等。同时,也分析了未来研究工作中存在的问题与挑战,如点阵结构性能表征及其尺度关联效应、增材制造材料成形各向异性、功能梯度材料与结构、增材制造材料与结构疲劳特性等对设计方法和成形工艺带来的挑战,为未来相关研究工作和航空航天应用提供参考。  相似文献   

12.
镍钛合金具有特异的形状记忆效应与超弹性、高阻尼性、良好的机械性能,是制造驱动器、阻尼器等的功能结构材料.由于镍钛合金的熔炼制备与机加工性能较差,目前应用的镍钛合金构件通常外形简单且尺寸较小,限制了其在航空等领域大型结构件中的应用.金属增材制造技术为形状复杂的大型镍钛合金构建的制造开辟了新途径.综述了镍钛合金的增材制造技术的现状,并举例说明其在航空制造领域中的应用.  相似文献   

13.
陶瓷零件因其强度高、密度低、耐高温及耐腐蚀等特点在航空航天领域具有广阔的应用前景。然而,陶瓷零件的传统制造方法存在周期长、成本高、依赖模具且难以制造复杂结构等问题,极大限制了陶瓷零件在航空航天领域的应用。增材制造技术是一种基于"离散-堆积"成型原理、由三维数据驱动直接制造零件的方法。与传统制造方法相比,增材制造技术具有设计自由度高、产品研发周期短、制造成本低等优势,可以无需模具快速制造复杂结构陶瓷零件。在简要阐述增材制造原理和特点的基础上,系统地分析了采用三维打印、激光选区烧结、激光选区熔化、熔融沉积造型、分层实体制造、光固化成型等技术制造陶瓷零件的研究现状及存在的问题。最后,对陶瓷零件增材制造技术在航空航天领域的潜在应用进行了分析与展望。  相似文献   

14.
随着增材制造技术的不断发展,在航空航天领域的研究与应用越来越广泛。本文主要介绍了增材制造技术在航空发动机中的发展现状以及应用前景,分析了目前增材制造技术的不足。  相似文献   

15.
针对TC18激光、电子束增材制造钛合金及变形钛合金3种不同制造工艺的材料开展超声检测特征试验研究。结果表明,TC18钛合金增材制造材料不同成形方向的超声波声速、材料衰减及检测灵敏度均存在较大差异,与变形钛合金相比具有明显的方向性。本研究结果对于增材制造制件的超声检测方法研究具有重要参考价值。  相似文献   

16.
增材制造技术在航空航天金属构件领域的发展及应用   总被引:1,自引:0,他引:1  
受传统制造工艺的限制,航空航天产品一直存在生产周期长、制造成本高、减重困难等问题,迫切需要开发出航空航天产品高效快速研制方法。与传统制造工艺相比,增材制造技术以其完全不同的制造理念迅速成为制造技术领域的新方向。阐述了金属增材制造(激光/电子束/电弧)技术种类、优势、深入研究和成果应用。  相似文献   

17.
全球范围内,经权威机构正式认证的飞机金属增材制造零件数量目前仅两例;而高分子材料增材制造零部件,在波音飞机上正式使用已近20年之久,累计总量在10万件以上。将增材制造技术与航空产业进行深度融合,做好统筹规划与顶层设计,同等程度地重视用金属和高分子材料增材技术直接进行航空器零部件的制造,是促进产业健康可持续发展的关键环节。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号