首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
补燃循环液体火箭发动机大范围工况调节方案研究   总被引:3,自引:2,他引:1  
结合液氧/煤油补燃循环发动机的结构和工作特点,重点探讨了推力室燃料主路节流、涡轮分流以及变发生器混合比等推力调节方案在发动机上的应用,确定了在发生器燃料路设置流量调节器改变发生器混合比,实现发动机推力在50%~110%范围内调节的方案,分析了推力调节速率对发动机工作过程的影响及主要组件的适应性.  相似文献   

2.
本文介绍了流量定位变推力发动机的方案选择、系统结构和研究过程。该发动机用以单片机为主体的数控器控制;取消了常规双调变推力发动机的杠杆系统,依靠液压作动的流量调节阀调节流量与混合比;流量控制的变截面喷注器保持喷注速度。发动机结构简单,质量小。从1989年元月至1992年12月.共生产发动机6台,热试车76次,累计时间1672秒。试车结果表明:发动机工作可靠、性能良好。除最低工况外,阶跃响应时间小于40ms,混合比控制精度为±3%,室压精度为±5%,燃烧效率大于0.90,主要性能指标超过了预定值,达到了目前国际水平.  相似文献   

3.
采用推进剂利用系统可以提高运载火箭的发射能力。以液氧/煤油富氧预燃室补燃循环发动机为例,提出的混合比调节系统方案为:在推力室燃料主路设置全流量的混合比调节器,由步进电机驱动,可以实现混合比连续调节。与我国现有的液体火箭发动机相比,这种调节方式可以实现全流量调节,调节范围大。同时,混合比调节时对推力、比冲和涡轮泵转速等参数的影响很小,对发动机系统和组件的影响也较小。发动机混合比调节范围可以达到±10%,调节速率为每秒2%以上。  相似文献   

4.
本文介绍一种可用于飞行器控制系统中的动力装置——变推力火箭发动机的系统方案。根据控制系统的要求,对发动机可调文氏管——喷注器系统的结构参数选择和设计,推导出数学表达式,并对这种发动机控制系统的动态性能和稳态性能加以分析。变推力液体火箭发动机,通常都是利用改变推进剂的秒流量来实现推力调节,其方案可利用喷注器流通截面的变化,或者在发动机供应系统中设置流量调节器,改变流量达到推力调节的目的。但是比较完善的方案是发动机供应系统和喷注器系统对推进剂的流量都进行调节。供应系统中的调节器用来调节推进剂的流量和组元混合比,喷注器流通截面的变化保证推进剂的喷射速度和雾化质量。供应系统中的流量调节器通常是采用可调节流量文氏管。在一般文氏管中加上一个可沿文氏管中心线移动的同心锥,调节锥的纵向移动改变文氏管的流通截面积,调节推进剂的流量。并且文氏管往往处于汽蚀状态下工作。  相似文献   

5.
粉末火箭发动机推力调节试验研究   总被引:4,自引:0,他引:4  
为了验证粉末火箭发动机的多次点火启动及推力调节等技术,利用设计的发动机开展了试验研究。研究结果表明,在高能火花塞作用下,粉末火箭发动机可实现多次点火启动及关机,且启动及关机的次数、时间间隔等可随意调节;通过调节粉末燃料和氧化剂的流量,可实现粉末火箭发动机的推力调节技术,推力调节比达到6.5。  相似文献   

6.
变推力液体火箭发动机可以为航天器的推进与控制提供可控动力,是航天器动力系统的理想选择.其中流量调节技术是变推力发动机的核心技术之一,是变推力发动机研究的热点和难点.本文在对变推力发动机技术进行总结的基础上,对比例电磁铁静态吸力特性、电磁阀阀口流量特性和比例电磁铁动态响应特性进行了深入研究.通过对比例电磁阀系统全面研究,...  相似文献   

7.
为了提高火箭运载能力,常规二级发动机设置了混合比调节系统.通过建立发动机系统非线性静态特性仿真模型,并结合地面试车数据,开展发动机混合比调节特性分析.结果表明:发动机的混合比调节范围达到-3.13%~+3.20%,完全满足火箭推进剂利用系统的要求,且有一定的余量;混合比调节系统既达到了调节发动机混合比的目的,又能保持发动机的推力基本不变.采用静态仿真模型可以很好地描述发动机稳态工作过程中的混合比调节特性,具有较高的精度.  相似文献   

8.
针对液氧煤油发动机在地面热试车过程中对工况变化和极限工况条件下工作性能的考核需求,提出采用集成一体化隔离技术的电机测控仪对流量调节器和燃料节流阀步进电机实施控制,并完成从电机检测、调节组件试验、发动机装配、热试车到交付出厂的测量和控制工作。研究过程采用定时器变频中断电机变速控制、PWM斩波细分驱动、多级中断嵌套和远距离测量等关键技术,解决了步进电机长距离、大驱动力矩下快速启停平稳控制要求,以及试车双路电机同时基下独立调节和角度同步测量,实现液氧煤油发动机试车过程推力和混合比稳定调节。400余次热试车及各项试验验证,电机控制频率偏差小于±2 Hz,角度控制精度小于±0.25°。  相似文献   

9.
卫星双组元统一推进系统加注混合比,是确定卫星氧化剂和燃烧剂加注量的重要参数。正确地确定加注混合比可以减少卫星的呆重,增加推进剂余量和卫星寿命。文章在原有混合比计算的基础上,分析了在轨不同阶段的不同压力、温度条件下10N推力器和490N变轨发动机的流量情况和入口压力、氧化剂和燃烧剂压力变化情况,利用推力器和变轨发动机地面...  相似文献   

10.
描述了先进的燃料和氧化剂泵驱动涡轮的空气动力学设计。正在研究将这些新结构所体现的技术应用于目前正处于初级设计阶段的美国政府属下的国家运载系统的主推进系统。该系统的主发动机将使用一个气体发生器循环,产生高于272,400kg 的推力,并具备节流能力。泵驱动涡轮的设计要求由先进的气体发生器发动机循环所限定,要求有很高的比功以减小气体发生器系统的流量并增大比冲。高功要求与低温泵所需的相对低转速结合起来,导致涡轮级的高负荷。介绍了详细的设计过程,以及燃料和氧化剂涡轮的最终基本结构。还描绘出叶片静压力分布以及流量特性。所描述的涡轮设计方案是各工作成员成功合作的结果,其中来自不同组织的许多设计人员以互助合作精神工作在一起。两种涡轮结构都采用“非常规”的高旋转叶片(约160。),预计与传统的结构相比在成本和性能方面都具备很大优势。  相似文献   

11.
M. Koupriyanov  J. Etele 《Acta Astronautica》2011,68(11-12):1839-1846
A theoretical analysis of a variable area rocket based combined cycle engine with and without simultaneous mixing and combustion is presented. The flowfield is solved using a steady, quasi-one-dimensional, inviscid control volume formulation with combustion effects included via a generalized equilibrium calculation. Compression augmentation is shown to be sensitive to the equivalence ratio within the primary rocket chamber, where ejector section performance is greatest at both low and high equivalence ratios but near a minimum at stoichiometric conditions. The thrust generated by the RBCC engine compared to that generated by the same rocket in isolation can be increased by as much as 12% at constriction ratios of between 45% and 50%. Thrust augmentation is also shown to vary with equivalence ratio, where for a fixed geometry the maximum thrust is generated at equivalence ratios slightly below unity.  相似文献   

12.
为了弥补极差分析法在发动机性能敏感性分析方面的不足,提高低温火箭发动机性能敏感性分析的准确度,引入了方差分析法,以某型液氧/甲烷发动机为例开展了性能敏感性分析,并通过F检验得到了每个干扰因素对发动机性能影响的显著性指标,与传统的极差分析法相比,提高了液体火箭发动机性能敏感性分析的准确度。结果表明:发动机推力和混合比对同一因素的敏感性存在差别,其中对发动机推力和混合比的影响最大的是涡轮泵效率,均呈现高度显著;紧随其后,对推力影响显著性最高的是副系统流阻特性,而对混合比影响最高的则是主系统流阻特性。研究表明,方差分析法可以有效提高敏感性分析的准确度,既为该型发动机的研制提供了理论支持,也为其他发动机的敏感性分析提供了新的参考。  相似文献   

13.
高翔宇  孙纪国  田原 《火箭推进》2013,39(4):19-23,51
为了研究火箭发动机推力室冷却通道内的甲烷传热和流阻特性,研制了缩比推力室甲烷传热试验系统,并以推力室挤压热试验的形式进行了5次超临界甲烷传热试验和2次亚临界甲烷传热试验研究.超临界甲烷传热试验燃烧室压力为5.5~7.5 MPa,燃烧室氢氧混合比约为6.8,甲烷温度为128~230 K,甲烷冷却剂流量为5~7 kg/s,甲烷冷却剂入口压力为8.3~11.7 MPa.亚临界甲烷传热试验的室压约为4 MPa,氢氧混合比2.8,甲烷温度为:128~189 K,甲烷冷却剂流量约为2.9 kg/s,甲烷入口压力为3~3.5 MPa.通过试验研究获得了液态甲烷在推力室冷却通道内超临界压力状态和亚临界压力状态下的传热和流阻特性.  相似文献   

14.
补燃循环发动机推力调节研究   总被引:1,自引:1,他引:0  
推力调节是提高液体火箭发动机适应性和运载火箭性能的有效措施。研究认为补燃循环发动机最佳的推力调节方案是调节预燃室中较少组元的流量。通过控制预燃室的温度,改变涡轮泵的功率,最终达到调节推力的目的。由于补燃循环发动机推力调节时。对预燃室温度的影响较大,推力向上调节幅度不宜过大,但可进行较大幅度的向下调节。上述推力调节方案对发动机比冲的影响很小,可以忽略不计;对发动机混合比的影响也较小,只需在大范围推力调节时考虑;推力调节速率不宜过快,应小于20%/s。  相似文献   

15.
涡轮泵超低工况性能研究   总被引:2,自引:2,他引:0  
白东安 《火箭推进》2008,34(3):13-16
对于泵压式变推力发动机和先进的冲压发动机,需要涡轮泵变工况工作,涡轮泵变工况性能是该类发动机研究的一个重点。结合上面级验证性发动机试车,对游机涡轮泵变工况的性能和稳定性进行分析研究。通过泵全流量特性试验和汽蚀试验,得出泵能够在额定流量点25%处稳定工作的结论。对涡轮工况变化后的燃气参数、入口压力、出口压力及效率进行分析,认为涡轮也能够稳定工作。给出了游机涡轮泵可以参加验证性试车的结论,并得到了发动机试车的验证。  相似文献   

16.
介绍了液氧/甲烷气液喷注器热试验情况,试验燃烧室压力7.1~7.4MPa,混合比3.5~3.9。研究了不同的喷嘴结构参数对燃烧性能和流量特性的影响。获得了燃烧效率、流量系数、振动、点火性能以及积炭特性等重要参数。  相似文献   

17.
张志红 《火箭推进》2007,33(1):59-62
为满足各型号发动机对冷调试验的设计要求,利用可编程控制器准确的时序控制,在水试状态下考核发动机流量调节器、换向阀、发生器燃料阀的工作协调性。验证调节器转级时发生器点火路和推力室点火路的充填特性,获得了流量调节器和换向阀的工作特性参数。为各型号发动机的深入研究提供了有效的依据。  相似文献   

18.
刘昊  王君  张留欢 《火箭推进》2021,47(2):27-31
为研究SMC模式下火箭混合比对RBCC发动机性能的影响规律,完成了氢/氧火箭推力室中心布局、二元定几何结构模型发动机飞行马赫数Ma0=4、高度H=17 km弹道点流场仿真,获得了不同火箭混合比(MR=2、3、4、5、6、8)及燃烧室长度的推力、比冲性能.研究表明:在火箭燃气富燃条件下(MR<8),产生了正的火箭推力增益...  相似文献   

19.
查柏林  马云腾  徐志高  田干  马岚 《宇航学报》2016,37(12):1500-1506
通过建立液体发动机稳态工作模型与热力计算模型,利用最小二乘优化与迭代计算的方法,仿真研究了被空气部分氧化的偏二甲肼(UDMH)对泵压式液体火箭发动机的影响规律。结果表明,随着UDMH中二甲胺、偏腙和水含量的增加,推进剂混合比略有升高,发动机推力、燃烧室压强和燃烧室温度等参数有较明显下降。与传统地单纯分析推进剂能量性能相比,此方法更能准确表征在火箭发动机系统复杂的调节机制作用下,变质推进剂对发动机工作性能的影响。  相似文献   

20.
The transient behaviour of the liquid propellant rocket engine is accompanied by non-stationary heat processes in the combustion chamber, the cooling jacket, and the injector. Based on the analysis of the phenomena, which take place in the liquid propellant rocket engine after cut-off command, the major stages of the curve of the rocket thrust drop were defined. A mathematical model of heat processes is suggested, which includes the calculation of transient heat transfer in the chamber, and the detection of boiling-up of the liquid fuel components in the cooling jacket and in the injector. The determination of the law of the rocket thrust drop and a calculation of the after-effect impulse (AEI) are presented. The calculated transient heat flux the combustion chamber and the transient wall temperatures were compared with experimental data, which were received during starting, and with the impulsive behaviour of the liquid propellant rocket engine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号