首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 187 毫秒
1.
为探索不同空化模型对氧泵诱导轮的适应性,选取Schnerr&Sauer,Zwart及Singhal三种空化模型对氧泵诱导轮进行数值模拟,将三种不同流量系数(ψ=0.9,ψ=1.0及ψ=1.1)下每个计算结果与实验数据进行对比,发现Schnerr&Sauer和Zwart两种模型预测空化外特性变化趋势更加接近实验值,其中Schnerr&Sauer模型在空化发生段的计算结果与实验结果吻合较好.Schnerr&Sauer和Zwart两种模型在ψ=1.0的临界空化数与实验值误差为2.9%,在ψ=1.1的临界空化数与实验值误差为8.7%,Singhal模型计算结果偏差较大.三种空化模型在计算叶片压力分布上比较相近,在计算叶栅及流道气泡数分布上,由于Schnerr&Sauer和Zwart模型都考虑了气泡数密度的影响,而Singhal模型仅考虑了气泡运动,计算的气泡分布较低;综合考虑外特性及内流场计算结果,Schnerr&Sauer更适应于诱导轮空化计算.  相似文献   

2.
液体火箭发动机的诱导轮抽吸性能受到工质热力学效应的影响,低温工质的热力学效应对诱导轮空化工况下的工作性能影响尤为显著。由于热力学效应对气泡的增长有抑制作用,低温工质的热力学效应能改善诱导轮在空化工况下的工作特性,但目前国内对此问题的认识依然只停留在定性的层面。为了更准确地理解诱导轮在低温工质中的工作特性,必须定量地考虑这种由热力学效应所导致的影响。在Rayleigh-Plesset方程的基础上推导出了一种基于热力学效应修正的空化模型,并将此模型编译成程序模块应用于液体火箭发动机氧泵诱导轮的数值计算。对数值计算结果进行定量的后处理分析,并与发动机空化工况下的热试车数据进行对比验证了模型的准确性。  相似文献   

3.
低温流体节流过程空化现象的形成与发展规律   总被引:1,自引:0,他引:1  
文章将RNG 湍流模型与完全空化模型相结合,对孔板节流所导致的低温流体空化流动进行数值模拟,得出了流场中的含气率与压力分布的变化规律。数值模拟研究还发现:由于孔板节流作用使得流场中最低压力出现在孔板喉部,并在此位置出现空化初生点;在低温空化流动中,泡状空化、云状空化、超空化3种空化形态相继出现。分析了空化初生点的压力以及含气率的变化规律,得出了3种空化形态的气相组成;分析了3种空化形态的初生标志,对临界空化状态进行了界定。  相似文献   

4.
在泵的设计中,间隙的尺寸控制向来都是一个难题,过大会损害泵的性能,过小则有发生碰磨的可能。针对关键间隙对泵性能影响的问题,利用ANSYS CFX软件,采用高精度六面体网格,应用SST、湍流模型和Rayleigh-Plesset汽蚀模型,对具有不同间隙的某型氧化剂泵进行了流场仿真,获得了间隙对泵水力性能和抗汽蚀性能的影响规律,并且从压力分布、气相份额分布和速度场等方面分析了产生这种影响的原因。结果表明:浮动环间隙越小,泵效率越高;诱导轮叶顶间隙越小,泵的抗汽蚀性能越高。泵的抗汽蚀性能随诱导轮叶顶间隙减小而提高的原因在于:叶顶回流强度减弱导致能量损失减少,离心轮入口静压升高。  相似文献   

5.
潜射导弹大攻角空化流动特性计算研究   总被引:5,自引:0,他引:5  
权晓波  魏海鹏  孔德才  李岩 《宇航学报》2008,29(6):1701-1700
潜射导弹水下高速运动时,弹体表面的空化现象对导弹的受力及力学环境有重要影响。通 过数值模拟,对大攻角情况下空化流动的特性进行研究,计算结果与试验值吻合较好, 验证了数值算法的准确性。得到弹体表面的压力分布情况,获取了不同攻角下空泡的不同形 态,分析了不同攻角、空泡数对弹体受力的影响。  相似文献   

6.
侯杰  于海力  杨敏 《火箭推进》2014,40(6):19-23
诱导轮是用来改善高速泵汽蚀性能的重要部件。为了研究诱导轮设计参数对高速泵汽蚀性能的影响,对一台卧式高速泵的诱导轮分别进行了3种方案的设计,并且对安装了每一种设计方案诱导轮的卧式高速泵都在试验室进行了相应的汽蚀试验,试验结果显示通过合理设计诱导轮参数可以显著提高高速泵的汽蚀性能。为了进一步研究诱导轮内部液体的流动状态,采用雷诺时均方法,对诱导轮内部的流场进行数值模拟,研究了诱导轮叶片工作面上相对速度分布及压力分布情况。依据数值模拟和试验结果,提出了对于本结构的高速泵诱导轮设计时诱导论的扬程系数应小于0.15,进口液流冲角要在合理范围内选取,不能取值过小。在合理的设计条件下,高速泵配备相等螺距诱导轮可以达到优良的汽蚀性能。  相似文献   

7.
目前平板螺旋式诱导轮的扬程计算法大都没有考虑诱导轮出口涡流区的影响,计算出的扬程和实际扬程有较大的偏差,涡流区的存在一方面会减小主流过流面积,使液流出口速度增大,损失增加,另一方面涡流运动自身也会消耗能量,使得诱导轮的扬程有所降低.以径向平衡理论为基础,考虑诱导轮出口涡流区的影响,提出一种扬程的修正计算法,用该方法对两种诱导轮进行了计算,计算结果和试验实测值比较接近,可以更准确的计算非空化工况下诱导轮的扬程.  相似文献   

8.
变螺距诱导轮的气蚀性能研究   总被引:1,自引:0,他引:1  
为了研究变螺距诱导轮的气蚀性能,通过试验观察了变螺距诱导轮的气蚀发展变化情况,分析了其内部的压力脉动现象。结果表明:诱导轮内的气穴随着入口压力降低,会呈现不同的气穴形态;气穴发展受流量影响,流量越大,气穴发展速度越快;诱导轮内发生了同步旋转气蚀,同步旋转气蚀也受流量影响,流量越大,同步旋转气蚀越强。  相似文献   

9.
为了揭示超同步旋转空化的传播机理,对二维平板叶栅内部非定常空化流动进行数值模拟研究,叶栅的几何参数和模拟工况均来自真实诱导轮试验结果。结果 表明:仿真预测的叶栅空化断裂点与试验结果接近,随空化数下降空化区的演变规律与试验结果一致。在一定的空化数范围出现传播频率比为1.1~1.4的旋转空化现象,对流场细节的深入分析发现空...  相似文献   

10.
多脉冲固体火箭发动机陶瓷舱盖结构分析   总被引:2,自引:0,他引:2  
针对多脉冲火箭发动机用陶瓷舱盖材料拉压模量不同的特性,利用ANSYS软件建立了平面轴对称有限元模型,分析了隔舱接触面上的压力与摩擦力对舱盖危险点应力的影响。结果表明,无论舱盖凸面受压还是凹面受压,轴心凸面处始终是结构的危险位置;增大结构预紧力并减小接触面的摩擦力可改善舱盖的应力分布。  相似文献   

11.
唐飞  李家文 《火箭推进》2011,37(1):34-39
诱导轮是现代液体火箭发动机中提高涡轮泵性能的关键部件,它可以在局部发生汽蚀的情况下工作,但是汽蚀所诱发的各种非定常不稳定现象会影响火箭发动机涡轮泵的性能、稳定性和寿命.本文利用基于Rayleigh-Plesset方程的混合流体模型,对诱导轮二维叶栅中的汽蚀不稳定现象进行了数值分析.结果表明,在一定汽蚀数范围内诱导轮容易...  相似文献   

12.
提高液体火箭发动机诱导轮汽蚀性能的研究   总被引:1,自引:0,他引:1  
唐飞  李家文  李永  周成 《火箭推进》2013,39(3):44-49,57
诱导轮叶型的设计应尽可能减少静压降,并保证叶片的负荷分布均匀,减轻叶片的汽蚀破坏。利用CFD技术分析了阶梯壳体和叶片打孔对诱导轮叶片负荷的影响,计算结果表明这些措施都可以降低叶片前缘的负荷。相比较于叶片打孔,阶梯壳体更加有助于降低叶片前缘的负荷,在一定程度上提高诱导轮汽蚀性能。最后,通过基于混合模型的汽蚀计算验证了上述结论的正确性。  相似文献   

13.
采用通用有限元软件ANSYS建立了某火箭动力系统试验台承力架有限元模型,分析了该承力架在试验状态和试验准备状态下的应力分布,根据应力分析结果对承力梁的结构和布局作了相应优化,使结构强度满足工作要求。同时对局部结构——承力环支腿进行了应力分析和优化。最后分析了承力架的自身模态,其轴向一阶振型在试验件轴向一阶振型范围内,需...  相似文献   

14.
在离心泵前加置诱导轮是保证离心泵获取优越汽蚀性能的关键途径。针对某型号液体火箭发动机诱导轮,采用CFD技术研究了轮毂型线形状对诱导轮汽蚀性能和扬程的影响。结果表明,在具有相同入口流动状态条件下,改变诱导轮轮毂型线形状可使诱导轮产生不同扬程。  相似文献   

15.
根据推进剂的材料特性及受载,用线粘弹性理论在ANSYS有限元软件中建立了某长期无翻转卧式贮存固体火箭发动机燃烧室筒段的有限元模型。计算了实际贮存、真空和高压三种典型状态下危险部位的界面应力。该方法对发动机的免维修和寿命预估有一定的参考价值。  相似文献   

16.
文章基于内部带有龙骨的半硬式平流层飞艇的结构设计,应用ANSYS有限元分析软件建立了龙骨的计算模型。对约束条件以及结构单元参数进行了分析,得到了龙骨结构在重力载荷作用下的应力和变形。计算结果符合结构设计规范的要求,可以为半硬式平流层飞艇的结构设计提供参考。  相似文献   

17.
FY-3气象卫星中分辨率光谱成像仪结构仿真分析   总被引:2,自引:0,他引:2  
用ANSYS软件仿真分析了风云三号(FY-3)气象卫星中分辨率光谱成像仪的结构。根据建立的成像仪有限元模型,进行了静力学、模态和谱分析,给出了X、Y、Z向加速度载荷下消旋机构的应力和变形、1-20阶模态频率,以及各向正弦振动谱作用下各部件的应力和变形。结果表明:有限元法与实验数据基本吻合,可用于成像仪设计的优化。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号