首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 664 毫秒
1.
Maturing of the enabling technologies has provided much of the infrastructure to support the development of a commercial Solar Power Satellite program. Solar Space Industries was formed to accomplish this goal. The basis of their development plan is to build a Ground Test Installation that will duplicate, in small scale on the Earth, all aspects of the power generating and power transmission systems except for the space environment and the range and size of the energy beam. Space operations issues will be separated from the power generation fixation and verified by testing. Doing the developmental testing on the ground instead of in space will result in a low cost program that can be accomplished in a very short time. The concept is to build a Ground Test Installation that couples an existing 100 kW terrestrial solar cell array to a phased-array wireless power transmitter based on a subarray. Power will be transmitted over a 1-¼ mile range to a receiving antenna and then fed into a commercial utility power grid. The objective is to demonstrate the complete function of the Solar Power Satellites, with the primary issue being the validation of practical wireless power transmission. The key features to demonstrate are: beam control, stability, steering, efficiency, reliability, cost, and safety  相似文献   

2.
Summary Orbital science has, to the present, concentrated on studies of force fields, particles, and visible photography. Cameras have been the major scientific instrument (it could be debated that for geodesy and gravity the entire spacecraft represents an instrument), and geology has been the principle benefactor. Photography has also been essential for the manned landing program, which would not have been possible on the schedule followed without the detailed Lunar Orbiter pictures.Orbital tracking data indicates that the Moon is almost homogeneous with perhaps a slight increase in density with depth. Significant analysis of the higher gravity harmonics have identified localized, near surface gravity highs that appear to be associated with circular maria. The Moon does not have a significant magnetic field of its own, and the solar wind appears to impinge directly on the surface. Russian and United States evidence on micrometeorite fluxes near the Moon is conflicting, but probably there is a decrease in flux compared to that near the Earth.Photographic evidence indicates that both impact and volcanic action has shaped the lunar surface. Mass movements of surface material and surface erosional effects are clearly evident. Surface water in the past, or near surface permafrost now, are definite possibilities to explain the sinuous rills. Faulting, both regional and local, is evident, as is probably horizontal layering near the surface.The United States space program is embarking on a broad program of orbital science including nearly the entire spectra of remote sensing. Approved orbital missions extend through 1972 and will be carried out in conjunction with manned landings. Emphasis will be placed on determining the extent and degree of surface variations between and within lunar provinces and the nature and strength of the lunar spectrum. Information obtained from the surface missions and the returned lunar samples will be invaluable in helping us to design orbital instruments and interpret the results.Missions after 1972 undoubtedly will carry more sophisticated instruments that will give us definitive information on the geochemical nature of the lunar surface and interior.Copies of NASA-issued documents may be obtained by writing to the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402. Information about, and data from, U.S. space missions, including photographs, can be obtained from the National Space Science Data Center, Code 601, Goddard Space Flight Center, Greenbelt, Maryland 20771.  相似文献   

3.
NASA's Artificial Gravity program consists of a team of researchers from Wyle Laboratories, NASA Johnson Space Center, and the University of Texas Medical Branch (UTMB). The short-radius centrifuge (SRC), built by Wyle Laboratories, will be integrated with UTMB's conducted bedrest studies, which mimic the detrimental effects of weightlessness (or microgravity). Bedrest subjects will be spun on the SRC at various accelerations and for various time periods, while being monitored medically. Parameters such as bone loss, muscle atrophy, balance control, and oxygen consumption will then be compared in order to research ways of mitigating the impact on astronauts' physiology. Other potential benefits from these studies extend to population groups on Earth, such as bedridden patients.  相似文献   

4.
为了厘清在轨GEO(Geosynchronous Earth Orbit,地球同步轨道)卫星不时出现异常的原因,提高卫星执行任务的可靠性,首先从机理上介绍了空间环境中的地球辐射带及高能电子的情况,引出GEO卫星所处恶劣空间环境的现实;其次基于我国SEPC(Space Environment Prediction Center,国家空间环境预报中心)以及NSMC(National Satellite Meteorological Center,国家卫星气象中心)的空间环境月报资料,结合某GEO环境业务卫星故障的实际数据,经统计归纳,分析得出了地球辐射带中的高能电子是导致GEO卫星发生故障的主要原因;最后按照事例技术分析、常规按需预报和特殊情况下的实时预报等3个层次对高能电子预报方法进行了初步探讨。通过分析可以看出,为提高卫星完成任务的可靠性、降低长期管理风险,需要加强GEO卫星所处空间环境高能电子的预报工作。  相似文献   

5.
The STEREO Mission: An Introduction   总被引:4,自引:0,他引:4  
The twin STEREO spacecraft were launched on October 26, 2006, at 00:52 UT from Kennedy Space Center aboard a Delta 7925 launch vehicle. After a series of highly eccentric Earth orbits with apogees beyond the moon, each spacecraft used close flybys of the moon to escape into orbits about the Sun near 1 AU. Once in heliospheric orbit, one spacecraft trails Earth while the other leads. As viewed from the Sun, the two spacecraft separate at approximately 44 to 45 degrees per year. The purposes of the STEREO Mission are to understand the causes and mechanisms of coronal mass ejection (CME) initiation and to follow the propagation of CMEs through the inner heliosphere to Earth. Researchers will use STEREO measurements to study the mechanisms and sites of energetic particle acceleration and to develop three-dimensional (3-D) time-dependent models of the magnetic topology, temperature, density and velocity of the solar wind between the Sun and Earth. To accomplish these goals, each STEREO spacecraft is equipped with an almost identical set of optical, radio and in situ particles and fields instruments provided by U.S. and European investigators. The SECCHI suite of instruments includes two white light coronagraphs, an extreme ultraviolet imager and two heliospheric white light imagers which track CMEs out to 1 AU. The IMPACT suite of instruments measures in situ solar wind electrons, energetic electrons, protons and heavier ions. IMPACT also includes a magnetometer to measure the in situ magnetic field strength and direction. The PLASTIC instrument measures the composition of heavy ions in the ambient plasma as well as protons and alpha particles. The S/WAVES instrument uses radio waves to track the location of CME-driven shocks and the 3-D topology of open field lines along which flow particles produced by solar flares. Each of the four instrument packages produce a small real-time stream of selected data for purposes of predicting space weather events at Earth. NOAA forecasters at the Space Environment Center and others will use these data in their space weather forecasting and their resultant products will be widely used throughout the world. In addition to the four instrument teams, there is substantial participation by modeling and theory oriented teams. All STEREO data are freely available through individual Web sites at the four Principal Investigator institutions as well as at the STEREO Science Center located at NASA Goddard Space Flight Center.  相似文献   

6.
The Institute of Space and Astronautical Science (ISAS), Japan, is developing a satellite, named MUSES-B, for VLBI (very long baseline interferometry) observations from space. The science observation program using MUSES-B is called the VLBI Space Observatory Programme (VSOP). The satellite is formed as an orbiting radiotelescope with a parabolic antenna of 8 meters diameter. Fine-resolution and high-quality imaging of active galactic nuclei and quasars, and observations of maser sources, are the main science objectives. The satellite will be launched in summer 1996. The satellite operation and science observations will be performed in collaboration with NASA and ground radio observatories around the world  相似文献   

7.
This paper describes the Space Weather Forecast Program managed by the Communications Research Laboratory of Japan. It is a long-range program consisting of three phases of five years each. This program emerged after an effort to investigate future needs for space environment prediction. We conclude that solar flares and magnetic storms are two main critical phenomena which will affect human's space activities in the 21st century. The core of the program is to set up a Space Weather Forecast Center which has core facilities: (1) a computer network system; (2) ground facilities for continuous observation of the Sun; and (3) a satellite-based space environment monitoring system. Emphasis is placed upon the necessity of internal cooperation for efficient operation of the Forecast Center.  相似文献   

8.
The Solar System includes two planets—Mercury and Mars—significantly less massive than Earth, and all evidence indicates that planets of similar size orbit many stars. In fact, one of the first exoplanets to be discovered is a lunar-mass planet around a millisecond pulsar. Novel classes of exoplanets have inspired new ideas about planet formation and evolution, and these “sub-Earths” should be no exception: they include planets with masses between Mars and Venus for which there are no Solar System analogs. Advances in astronomical instrumentation and recent space missions have opened the sub-Earth frontier for exploration: the Kepler mission has discovered dozens of confirmed or candidate sub-Earths transiting their host stars. It can detect Mars-size planets around its smallest stellar targets, as well as exomoons of comparable size. Although the application of the Doppler method is currently limited by instrument stability, future spectrographs may detect equivalent planets orbiting close to nearby bright stars. Future space-based microlensing missions should be able to probe the sub-Earth population on much wider orbits. A census of sub-Earths will complete the reconnaissance of the exoplanet mass spectrum and test predictions of planet formation models, including whether low-mass M dwarf stars preferentially host the smallest planets. The properties of sub-Earths may reflect their low gravity, diverse origins, and environment, but they will be elusive: Observations of eclipsing systems by the James Webb Space Telescope may give us our first clues to the properties of these small worlds.  相似文献   

9.
All three segments of the GPS, space, control, and user equipment, are now in production. Extensive testing during Phase I and II of the program has proven that the GPS provides a quantum improvement over the capabilities of existing navigational systems and significant mission enhancement in a broad range of military operations. Production of the Block II satellites is progressing on schedule, but the space shuttle accident will delay completion of the full constellation by about two years. The Control Segment is fully operational and will transition to Space Command in 1987. The user equipment will enter production and undergo further testing during the LRIP period to ensure that service operational effectiveness and suitability requirements are met before commencing full-rate production. The GPS should be fully operational in the early 1990's and will provide a powerful force enhancer for all the military services for many years to come.  相似文献   

10.
空间互联网将是由各种区域网构成的复杂异构网络,为了使其能够逐步实现自动化运行,网络效益得到最大程度的发挥,须做好网络互联的顶层规划与设计,并开发具体的标准技术.根据近年CCSDS (Consultative Committee for Space Data Systems,空间数据系统咨询委员会)发布的建议书,以及相关工作组的项目规划情况,介绍了SSI(Solar System Internetwork,太阳系互联网)体系结构、IPoC(IP over CCSDS space links,在CCSDS空间链路之上承载IP),以及DTN(Delay Tolerant Networking,容延迟网络)等标准项目.从CCSDS空间网络互联技术的发展历程不难得出结论:我国未来空间网络互联应注重区域网之间互联的顶层设计;区域网内部各子网之间的互联技术应选择以航天任务需求牵引为主;DTN将在区域网之间互联以及区域网从简单到复杂发展中都发挥重要作用.  相似文献   

11.
The availability of reliable satellites and space probes makes it timely to review our state of knowledge in detail on all aspects of our solar system so that these new tools can be used to maxi-mum advantage in scientific exploration and technical use.Earth-Moon libration points have been of theoretical interest as a concrete example in the three body problem. In analogy with the Trojan Asteroids they may also be collection points for dust or particles or other small bodies which are shown to be of geophysical interest. Finally, they may find use in applications where relatively long time stationary behavior relative to the Earth and the Moon is desirable; for example: for long term Solar observation or as a communication link.The leading question of interest at the present is confirmation of reported ground observations on dust clouds in the vicinity of the stable points through satellite based observations.The Authors are indebted to the Space Sciences Board of the U.S. National Academy of Sciences for permission to use background material of the Space Research Summer Study 1965.  相似文献   

12.
The LISA Pathfinder Mission   总被引:1,自引:0,他引:1  
LISA Pathfinder, formerly known as SMART-2, is the second of the European Space Agency’s Small Missions for Advance Research and Technology, and is designed to pave the way for the joint ESA/NASA Laser Interferometer Space Antenna (LISA) mission, by testing the core assumption of gravitational wave detection and general relativity: that free particles follow geodesics. The new technologies to be demonstrated in a space environment include: inertial sensors, high precision laser interferometry to free floating mirrors, and micro-Newton proportional thrusters. LISA Pathfinder will be launched on a dedicated launch vehicle in late 2011 into a low Earth orbit. By a transfer trajectory, the sciencecraft will enter its final orbit around the first Sun-Earth Lagrange point. First science results are expected approximately 3 months thereafter. Here, we give an overview of the mission including the technologies being demonstrated.  相似文献   

13.
As the Earth-orbit International Space Station (ISS) grows, it needs more power which is generated by solar panels. For periods in which the planet Earth occults sunlight, energy is stored in the biggest set of batteries ever flown in space. Reliability of power is important in a space station because a failure requires costly launch of replacement components. Even greater importance results when astronauts work in the station. A power failure that causes the astronauts to perish would be a very serious event. The first battery-containing "integrated equipment module" was launched November 30, 2000 and installed on port 6 of the International Space Station. Two more modules will be launched by the United States; to be launched in 2004 is the European Space Agency's "attached COLUMBUS APM laboratory," which will have its own power system. Unexpected battery-related events occurred in the integrated equipment module during its first year-and-a-half in orbit. The problems and their solutions were described in papers presented at the 37/sup th/ Intersociety Energy Conversion Engineering Conference. Since the International Space Station carries more battery cells than any other spacecraft, the in-flight performance data from its battery assembly can be useful to engineers who design power supplies for other spacecraft. We, therefore, summarize the battery development process, the adopted design, and an unexpected in-flight battery degradation and its correction.  相似文献   

14.
This is an overview of the cryogenic refrigerator and cryogenic integration programs in development and characterization under the Cryogenic Technologies Group, Space Vehicles Directorate of the Air Force Research Laboratory (AFRL). The vision statement for the Air Force Research Laboratory Cryogenic Technologies Group is to support the space community as the center of excellence for developing and transitioning space cryogenic thermal management technologies. The primary customers for the AFRL cryogenic technology development programs are Ballistic Missile Defense Organization (BMDO), the USAF SBIRS (space based infrared) Low program office, and DoD space surveillance programs. This describes a variety of Stirling, pulse tube, Reverse Brayton, Joule-Thomson, and Sorption cycle cryocoolers currently under development to meet current and future Air Force and DoD requirements. The AFRL customer single stage cooling requirements at 10 K, 35 K, 60 K, 150 K, and multi-stage cooling requirements at 35/60 K are addressed. In order to meet these various requirements, the AFRL Cryogenic Technologies Group is pursuing various strategic cryocooler and cryogenic integration options. The Air Force Research Laboratory is also developing several advanced cryogenic integration technologies that will result in the reduction in current cryogenic system integration penalties and design time. These technologies include the continued development of the cryogenic systems integration model (CSIM), 60 K, and 100 K thermal storage units and heat pipes, cryogenic straps, thermal switches, and development of an integrated lightweight cryogenic bus (CRYOBUS).  相似文献   

15.
针对载人月球探测,在我国现有深空测控资源的基础上,结合其他航天组织,如NASA (National Aeronautics and Space Administration,美国国家航空航天局)、ESA(European Space Agency,欧空局)等分布在全球的深空测控资源,提出了全球深空站布局体系.该体系包括我国深空站在内的8个地面站,大体形成“南四北四,均匀分布”的格局.并以美国“重返月球”计划深空站布局为参照,对比分析了布局体系的测控覆盖、三向测量和干涉测量共视弧段,讨论了布局干涉测量不同观测站三角的测角精度,可以为后续载人月球探测任务提供支持和参考.  相似文献   

16.
The Solar Terrestrial Relations Observatory (STEREO) is the third mission in NASA’s Solar Terrestrial Probes program. The mission is managed by the Goddard Space Flight Center (GSFC) and implemented by The Johns Hopkins University Applied Physics Laboratory (JHU/APL). This two-year mission provides a unique and revolutionary view of the Sun–Earth system. Consisting of two nearly identical observatories, one ahead of Earth in its orbit around the Sun and the other trailing behind the Earth, the spacecraft trace the flow of energy and matter from the Sun to Earth and reveal the three-dimensional structure of coronal mass ejections (CMEs) to help explain their genesis and propagation. From its unique side-viewing vantage point, STEREO also provides alerts for Earth-directed solar ejections. These alerts are broadcast at all times and received either by NASA’s Deep Space Network (DSN) or by various space-weather partners.  相似文献   

17.
空间机械臂技术是维护空间站、执行指定任务、保障航天员出舱作业的安全等必不可少的关键技术。视觉测量技术则是保证空间机械臂顺利完成空间遥操作任务的前提。基于此前提,首先对空间机械臂视觉测量技术进行了概述,并分别对手眼关系标定、标志器识别以及相对三维位姿测量等关键技术进行了阐述;然后,以加拿大机械臂为例提出了一种基于边缘特征的标志器识别算法,给出了具体的识别流程,并采用一种基于非迭代的相对位姿测量算法实现了位姿求解;最后,针对标志器识别算法和位姿测量算法给出了基于仿真图像的实验结果和机械臂原理样机集成实验结果。最终实验结果表明:提出的空间机械臂视觉测量方法合理可行,满足预期的技术指标要求,具有较强的工程应用价值。  相似文献   

18.
This paper describes the current status of the COLUMBUS Programme, Europe's contribution to the U.S. Space Station, which is being studied under contract to the European Space Agency. Twelve European nations are involved in and are contributing to this new space undertaking. The elements of the COLUMBUS Space Segment presently being considered by ESA are a Pressurized Laboratory Module (4 segment), permanently attached to the U.S. Space Station, dedicated to materials science, fluid physics and compatible life sciences, and a Polar Platform, configured to accommodate Earth observation, meteorology, communications and space science payloads. The reference launch vehicles are the Space Shuttle for the attached Module and Ariane 5 for the Polar Platform. The more recently added COLUMBUS flight configuration, the Man-Tended Free Flyer (MTFF), consists of a combination of two programme elements, the Resource Module and a 2-segment Pressurized Module. It is designed to provide all required resources and services to the various payloads in a continuous microgravity environment to perform material science, fluid physics and compatible life sciences experiments. The MTFF is carried into orbit by the European launcher Ariane 5. As an option, studies of an enhanced ground based EURECA carrier as a small co-orbiting platform, launched by the Space Shuttle, will be initiated. The primary function would be to accommodate space science and/or micro-g payloads. These EURECA studies are performed currently outside the COLUMBUS programme scope, and this option is therefore not addressed in detail in this paper.  相似文献   

19.
The Global-Scale Observations of the Limb and Disk (GOLD) Mission   总被引:2,自引:0,他引:2  
The Earth’s thermosphere and ionosphere constitute a dynamic system that varies daily in response to energy inputs from above and from below. This system can exhibit a significant response within an hour to changes in those inputs, as plasma and fluid processes compete to control its temperature, composition, and structure. Within this system, short wavelength solar radiation and charged particles from the magnetosphere deposit energy, and waves propagating from the lower atmosphere dissipate. Understanding the global-scale response of the thermosphere-ionosphere (T-I) system to these drivers is essential to advancing our physical understanding of coupling between the space environment and the Earth’s atmosphere. Previous missions have successfully determined how the “climate” of the T-I system responds. The Global-scale Observations of the Limb and Disk (GOLD) mission will determine how the “weather” of the T-I responds, taking the next step in understanding the coupling between the space environment and the Earth’s atmosphere. Operating in geostationary orbit, the GOLD imaging spectrograph will measure the Earth’s emissions from 132 to 162 nm. These measurements will be used image two critical variables—thermospheric temperature and composition, near 160 km—on the dayside disk at half-hour time scales. At night they will be used to image the evolution of the low latitude ionosphere in the same regions that were observed earlier during the day. Due to the geostationary orbit being used the mission observes the same hemisphere repeatedly, allowing the unambiguous separation of spatial and temporal variability over the Americas.  相似文献   

20.
The Solar Terrestrial Relations Observatory (STEREO) is primarily a solar and interplanetary research mission, with one of the natural applications being in the area of space weather. The obvious potential for space weather applications is so great that NOAA has worked to incorporate the real-time data into their forecast center as much as possible. A subset of the STEREO data will be continuously downlinked in a real-time broadcast mode, called the Space Weather Beacon. Within the research community there has been considerable interest in conducting space weather related research with STEREO. Some of this research is geared towards making an immediate impact while other work is still very much in the research domain. There are many areas where STEREO might contribute and we cannot predict where all the successes will come. Here we discuss how STEREO will contribute to space weather and many of the specific research projects proposed to address STEREO space weather issues. The data which will be telemetered down in the Space Weather Beacon is also summarized here. Some of the lessons learned from integrating other NASA missions into the forecast center are presented. We also discuss some specific uses of the STEREO data in the NOAA Space Environment Center.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号