首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到7条相似文献,搜索用时 0 毫秒
1.
The Solar Optical Telescope (SOT), which NASA plans to operate on Spacelab, should provide resolution down to 0.1 arc sec, thus offering the capability for solving a number of fundamental problems in solar magnetism and in atmospheric heating and dynamics.Proceedings of the Conference Solar Physics from Space, held at the Swiss Federal Institute of Technology Zurich (ETHZ), 11–14 November 1980.  相似文献   

2.
现场总线控制系统是工业设备自动化控制的一种计算机局域网络。它依靠具有检测、控制、通信能力的微处理芯片,将数字化仪表(设备)在现场实现彻底分散控制,并以这些测量控制设备单个点作为网络节点,用总线形式连接,形成一个开放、标准的现场总线控制系统。与DCS系统相比,现场总线控制系统结构大大简化、成本降低,能满足实际运行中的实时性要求,提高了系统运行的可靠性。给出了基于CAN总线技术的现场数字化仪器设备控制系统的通信接口设计方案。  相似文献   

3.
The Sondrestrom radar facility, funded by the NSF Upper Atmospheric Facilities Program, is operated and managed by SRI International. The facility is located on the west coast of Greenland, just north of the Arctic Circle, near 75 deg invariant magnetic latitude. The principal instrument at the facility is the incoherent scatter radar. The incoherent scatter technique allows the direct measurement of ionospheric electron number density, ion velocity, and electron and ion temperature along the radar beam. Because the radar antenna is fully steerable these parameters can be determined as functions of horizontal distance and altitude. Additional ionospheric quantities can be derived using these measured parameters. As part of the ISTP mission, the radar will measure the spatial (horizontal and altitudinal) and temporal variations of ionospheric parameters including electron density, large scale electric field. conductivity, currents, and energy input. Repetitive measurements define variations of parameters with local time, as well.  相似文献   

4.
The plasma instrumentation (PLS) for the Galileo Mission comprises a nested set of four spherical-plate electrostatic analyzers and three miniature, magnetic mass spectrometers. The three-dimensional velocity distributions of positive ions and electrons, separately, are determined for the energy-per-unit charge (E/Q) range of 0.9 V to 52 kV. A large fraction of the 4-steradian solid angle for charged particle velocity vectors is sampled by means of the fan-shaped field-of-view of 160°, multiple sensors, and the rotation of the spacecraft spinning section. The fields-of-view of the three mass spectrometers are respectively directed perpendicular and nearly parallel and anti-parallel to the spin axis of the spacecraft. These mass spectrometers are used to identify the composition of the positive ion plasmas, e.g., H+, O+, Na+, and S+, in the Jovian magnetosphere. The energy range of these three mass spectrometers is dependent upon the species. The maximum temporal resolutions of the instrument for determining the energy (E/Q) spectra of charged particles and mass (M/Q) composition of positive ion plasmas are 0.5 s. Three-dimensional velocity distributions of electrons and positive ions require a minimum sampling time of 20 s, which is slightly longer than the spacecraft rotation period. The two instrument microprocessors provide the capability of inflight implementation of operational modes by ground-command that are tailored for specific plasma regimes, e.g., magnetosheath, plasma sheet, cold and hot tori, and satellite wakes, and that can be improved upon as acquired knowledge increases during the tour of the Jovian magnetosphere. Because the instrument is specifically designed for measurements in the environs of Jupiter with the advantages of previous surveys with the Voyager spacecraft, first determinations of many plasma phenomena can be expected. These observational objectives include field-aligned currents, three-dimensional ion bulk flows, pickup ions from the Galilean satellites, the spatial distribution of plasmas throughout most of the magnetosphere and including the magnetotail, and ion and electron flows to and from the Jovian ionosphere.  相似文献   

5.
This paper presents an overview of work being done by Teradyne in conjunction with the IVI Foundation to specify an IVI class for digital instrumentation. The Interchangeable Virtual Instruments (IVI) Foundation was formed in August 1997 to define standard specifications for programming common test instrument capabilities. The paper will present the major architectural aspects of digital test instrumentation and how those features can be grouped into classes for the purpose of writing an instrument independent driver. Topics discussed will include derivation of capability classes, class extensions, simulation, and range checking. Examples of how the IVI digital class would apply to the Teradyne M9-Series Digital Test Instrument will be included. Conclusions will summarize the unique attributes of digital test instrumentation, the benefits which can be achieved through standardization, and the tradeoffs associated with utilizing class extensions  相似文献   

6.
Depot-level automatic test equipment has been used over the years by various facets of both the government and commercial industry. Over time, the instrumentation used in the depot will need to be repaired or replaced and, oftentimes, the older instruments are no longer serviceable or manufactured. This paper discusses how to replace the obsolete instrument and its associated hardware. Test module adapter with a software module and driver that allows compatibility between the original test executive and the modern instrument without re-hosting existing test program sets. Systems & Electronics, Inc. has implemented this procedure for a digitizer and precision DC power supply on a depot that utilizes the IEEE-488 general purpose interface bus (GPIB) for communication between the control computer and instrumentation.  相似文献   

7.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号