首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
During the EXOSAT observation of 2S1636-536 in July 1983 the quiescent flux was observed to brighten from 1.7×10 -9 ergs/cm. 2 /sec to 2.6×10-9 ergs/cm. 2 /sec, this increase being accompanied by a decrease in effective temperature. Further analysis of the spectrum reveals that the best fit is a power law with an index which increases from -1.75 to-2.1 while the source brightens; there is some evidence for an upper cut off. This spectrum is interpreted as the result of soft photons from the neutron star surface which are Comptonised in a hot plasma cloud surrounding the neutron star (neutron star corona). The increasing spectral index is seen as the result of Compton cooling of the corona as the output of quiescent flux rises in response to an increasing accretion rate.  相似文献   

2.
Electrons are more susceptible to energy losses in magnetic fields and photon fields than protons. Hence, photons at various wavelengths, including gamma rays, bring more readily information on high-energy electrons than on protons. Neutrinos provide a unique tracer for protons. Furthermore, at high energies the neutrino flux can considerably exceed the gamma-ray flux, as gamma rays above ~1 MeV are degraded by γ-γ interactions in compact high-intensity sources. Active galactic nuclei (AGN) with outputs >1045 ergs s?1 and dimensions ~1014 cm would constitute such sources. If the AGN are powered by ultra-massive black holes, then these numerical conditions are satisfied, and at high energies the flux J v >J γ . Berezinsky and Ginzburg have pointed out that the photon intensity around spinars is not sufficient to cause gamma-ray degradation. These authors have demonstrated that the measurement of neutrino flux, combined with the measurement (or upper limit) of gamma-ray flux would show whether the active galactic nuclei are powered by massive black holes or spinars. We estimate that gamma rays would be degraded at spinars, too, at energies >1 GeV.  相似文献   

3.
We report the results of a 1.4 104s observation of the region of 4U 1323-62 with the EXOSAT ME. The source has a flux of 7–8 10-11 erg/cm2s (2–10 keV) and a power-law spectrum with 1.1 < < 1.8. During our observation, the source showed a symmetric 60% dip in its X-ray flux of R~1 hr. The spectrum hardens during the dip. Inside the dip we observed an X-ray burst with a 2–10 keV peak flux of 7 10-10 erg/cm2s. The burst spectrum is black-body, and shows evidence of cooling during the burst decay. The discovery of a burst from 4U 1323-62 settles the classification of the source; the observation of a dip suggests that we may be able to measure its orbital period in the near future.  相似文献   

4.
Initial ISEE magnetometer results: magnetopause observations   总被引:15,自引:0,他引:15  
The magnetic field profiles across the magnetopause obtained by the ISEE-1 and -2 spacecraft separated by only a few hundred kilometers are examined for four passes. During one of these passes the magnetosheath field was northward, during one it was slightly southward, and in two it was strongly southward. The velocity of the magnetopause is found to be highly irregular ranging from 4 to over 40 km s-1 and varying in less time than it takes for a spacecraft to cross the boundary. Thicknesses ranged from 500 to over 1000 km.Clear evidence for reconnection is found in the data when the magnetosheath field is southward. However, this evidence is not in the form of classic rotational discontinuity signatures. Rather, it is in the form of flux transfer events, in which reconnection starts and stops in a matter of minutes or less, resulting in the ripping off of flux tubes from the magnetosphere. Evidence for flux transfer events can be found both in the magnetosheath and the outer magnetosphere due to their alteration of the boundary normal. In particular, their presence at the time of magnetopause crossings invalidates the usual 2-dimensional analysis of magnetopause structure. Not only are these flux transfer events probably the dominant means of reconnection on the magnetopause, but they may also serve as an important source of magnetopause oscillations, and hence of pulsations in the outer magnetosphere. On two days the flux transfer rate was estimated to be of the order of 2 × 1012 Maxwells per second by the flux transfer events detected at ISEE. Events not detectable at ISEE and continued reconnection after passage of an FTE past ISEE could have resulted in an even greater reconnection rate at these times.  相似文献   

5.
During a coordinated observations of 2S1636-536 with EXOSAT, Tenma and the 1.4 metre Danish telescope at La Silla, a single burst was detected at all three observatories. The burst was bright with a peak flux of 6 × 10-8 ergs/cm 2 /s and rapid expansion of the blackbody radius. EXOSAT and Tenma agree closely in the values of blackbody radius, temperature and flux which are very similar to the three bursts recently reported by Tenma which appear to reach the Eddington flux limit at their peak. Preliminary analysis of the X-ray and optical timing data reveal that this burst is unusual in having a sharp leading edge in both X-ray and optical data and a very short X-ray-optical delay compared with those previously observed. If confirmed, this result puts significant restraints on the location of the optical reprocessing site.  相似文献   

6.
Observations of the solar spectrum have been made between 1200–2200 with high spectral resolution. The results were obtained with an all-reflecting echelle spectrograph carried by a stabilized Skylark rocket launched in April 1970. Measurements of the profiles of a number of emission lines due to Siii, Cii, Siiii and Civ formed in the temperature range 104-105 K, indicate ion energies which are considerably in excess of the electron temperatures derived from the ionization balance. Since the ion/electron relaxation time is very short the observed ion energies cannot correspond to an ion temperature and hence a non-thermal mechanical energy component exists in the transition zone.It is postulated that the non-thermal energy component represents the actual mechanical energy responsible for the heating of the corona, and, that, it is propagated as an acoustic wave. On this basis and with a preliminary estimate of the reflection from the transition zone, a flux of 3 × 105 erg cm -2 s -1 is established as entering the corona. This value is in agreement with estimates of the total energy loss from the corona due to conduction, radiation and the solar wind, thus establishing a gross energy balance.Theoretical calculations are currently underway to establish the physical nature of the atmosphere which would result from such a propagating flux. At the present time this has been carried out for an atmosphere in hydrostatic equilibrium and the energy balance equation solved. A preliminary temperature structure which results is shown in Figure 1, together with the derived distribution in electron density. This gives a corona of the right temperature and density but the observed structure deviates in detail from those derived from an analysis of the solar XUV spectrum.  相似文献   

7.
The aero-heating of the rudder shaft region of a hypersonic vehicle is very harsh, as the peak heat flux in this region can be even higher than that at the stagnation point. Therefore, studying the aero-heating of the rudder shaft is of great significance for designing the thermal protection system of the hypersonic vehicle. In the wind tunnel test of the aero-heating effect, we find that with the increase of the angle of attack of the lifting body model, the increasement of the heat flux of the rudder shaft is larger under laminar flow conditions than that under turbulent flow conditions. To understand this, we design a wind tunnel experiment to study the effect of laminar/turbulent hypersonic boundary layers on the heat flux of the rudder shaft under the same wind tunnel freestream conditions. The experiment is carried out in the ?2 m shock tunnel(FD-14 A) affiliated to the China Aerodynamics Research and Development Center(CARDC). The laminar boundary layer on the model is triggered to a turbulent one by using vortex generators, which are 2 mm-high diamonds. The aero-heating of the rudder shaft(with the rudder) and the protuberance(without the rudder) are studied in both hypersonic laminar and turbulent boundary layers under the same freestream condition. The nominal Mach numbers are 10 and 12, and the unit Reynolds numbers are2.4 × 10~6 m~(-1) and 2.1 × 10~6 m-1. The angle of attack of the model is 20°, and the deflection angle of the rudder and the protuberance is 10°. The heat flux on the model surface is measured by thin film heat flux sensors, and the heat flux distribution along the center line of the lifting body model suggests that forced transition is achieved in the upstream of the rudder. The test results of the rudder shaft and the protuberance show that the heat flux of the rudder shaft is lower in the turbulent flow than that in the laminar flow, but the heat flux of the protuberance is the other way around,i.e., lower in the laminar flow than in the turbulent flow. The wind tunnel test results is also validated by numerical simulations. Our analysis suggests that this phenomenon is due to the difference of boundary layer velocities caused by different thickness of boundary layer between laminar and turbulent flows, as well as the restricted flow within the rudder gap. When the turbulent boundary layer is more than three times thicker than that of the laminar boundary layer, the heat flux of the rudder shaft under the laminar flow condition is higher than that under the turbulent flow condition. Discovery of this phenomenon has great importance for guiding the design of the thermal protection system for the rudder shaft of hypersonic vehicles.  相似文献   

8.
The X-ray properties of the supernova remnant G 29.7-0.3 are discussed based on spectral data from the EXOSAT satellite. In the 2 to 10 keV range a featureless power-law spectrum is obtained, the best-fit parameters being: energy spectral index =-0.77, hydrogen column density on the line of sight NH=2.3.1022 cm–2. The incident X-ray flux from the source is (3.6±0.1) 1011 erg cm–2 s–1 in the 2 to 10 keV range corresponding to an intrinsic luminosity of about 2. 1036 erg s–1 for a distance of 19 kpc. The source was not seen with the imaging instrument thus constraining the hydrogen column density to be NH=(3.3 ±0.3) 1022 cm–2 and the energy spectral index =1.0±0.15. This new observation is consistent with emission by a synchroton nebula presumably fed by an active pulsar. An upper limit of 1.5% for the pulsed fraction in the range of periods 32ms to 104 s has been obtained.  相似文献   

9.
Interstellar dust was first identified by the dust sensor onboard Ulysses after the Jupiter flyby in February 1992. These findings were confirmed by the Galileo experiment on its outbound orbit from Earth to Jupiter. Although modeling results show that interstellar dust is also present at the Earth orbit, a direct identification of interstellar grains from geometrical arguments is only possible outside of 2.5 AU. The flux of interstellar dust with masses greater than 6 · 10–14 g is about 1 · 10–4 m –2 s –1 at ecliptic latitudes and at heliocentric distances greater than 1AU. The mean mass of the interstellar particles is 3 · 10–13 g. The flux arrives from a direction which is compatible with the influx direction of the interstellar neutral Helium of 252° longitude and 5.2° latitude but it may deviate from this direction by 15 – 20°.  相似文献   

10.
The solar wind emanating from coronal holes (CH) constitutes a quasi-stationary flow whose properties change only slowly with the evolution of the hole itself. Some of the properties of the wind from coronal holes depend on whether the source is a large polar coronal hole or a small near-equatorial hole. The speed of polar CH flows is usually between 700 and 800 km/s, whereas the speed from the small equatorial CH flows is generally lower and can be <400 km/s. At 1 AU, the average particle and energy fluxes from polar CH are 2.5×108 cm–2 sec–1 and 2.0 erg cm–2 s–1. This particle flux is significantly less than the 4×108 cm–2 sec–1 observed in the slow, interstream wind, but the energy fluxes are approximately the same. Both the particle and energy fluxes from small equatorial holes are somewhat smaller than the fluxes from the large polar coronal holes.Many of the properties of the wind from coronal holes can be explained, at least qualitatively, as being the result of the effect of the large flux of outward-propagating Alfvén waves observed in CH flows. The different ion species have roughly equal thermal speeds which are also close to the Alfvén speed. The velocity of heavy ions exceeds the proton velocity by the Alfvén speed, as if the heavy ions were surfing on the waves carried by the proton fluid.The elemental composition of the CH wind is less fractionated, having a smaller enhancement of elements with low first-ionization potentials than the interstream wind, the wind from coronal mass ejections, or solar energetic particles. There is also evidence of fine-structure in the ratio of the gas and magnetic pressures which maps back to a scale size of roughly 1° at the Sun, similar to some of the fine structures in coronal holes such as plumes, macrospicules, and the supergranulation.  相似文献   

11.
A 13 hr observation of 2S0142+61 on 1984 August 27 by EXOSAT shows the X-ray flux of 2S0142+61 to be modulated with a period of 1456+/-6 s. The 1–10 keV spectrum is two component with a 0.7 keV thermal and 0.0 energy index power law, with 30% of the total luminosity in the thermal component. The spectrum is absorbed by 1 × 1022 H cm-2. Only the hard component is pulsed with a 3 to 10 keV peak to mean amplitude of 35%. Below 2 keV the modulation is less than a few percent. The total 1–10 keV luminosity is 3.5 × 1032 erg s-1 for a distance of 100 pc. Possible optical counterparts are discussed.  相似文献   

12.
The correlation between diffuse galactic gamma rays and gas tracers is studied using the final COS-B database and H i and CO surveys covering the entire galactic plane. A good quantitative fit to the gamma rays is obtained, with a small galacto-centric gradient in the gamma-ray emissivity per hydrogen atom. The average ratio of H2 column density to integrated CO temperature is determined, the best estimate being (2.3 ± 0.3) × 102 molecules cm–2 (K km s–1)–1. Strictly taken, this value is an upper limit. The corresponding mass of molecular hydrogen in the inner galaxy, derived using both 1st and 4th quadrants, is 1.0 × 109 M .The softer gamma-ray spectrum towards the inner galaxy found in previous work can be attributed to a steeper emissivity gradient at low energies and/or to a softer gamma-ray spectrum of the emission distributed like molecular gas. A steeper emissivity gradient at low energies could be related to cosmic-ray spectral variations in the Galaxy, to different distributions of cosmic-ray electrons and nuclei, or to a contribution from discrete sources. A softer spectrum for the emission associated with molecular clouds may be physically related to the clouds themselves (i.e., cosmic-ray spectral variations) or to an associated discrete source distribution.New results on the temporal and spectral characteristics of the high-energy (50 MeV to 5 GeV) gammaray emission from the Vela pulsar are presented. The whole pulsed flux is found to exhibit long-term variability. Five discrete emission regions within the pulsar lightcurve have been identified, with the spectral characteristics and long-term behaviour being different. These characteristics differ significantly from those reported earlier for the Crab pulsar. However, geometrical pulsar models have been proposed (e.g., Morini, 1983; Smith, 1986) which could explain many of these features.  相似文献   

13.
The ESA satellite COS-B viewed the Cyg-X region 7 times between November 1975 and March 1982. A search for periodic gamma-ray emission (E > 70 MeV) from Cyg X-3 at the characteristic 4.8 h period did not reveal the source. Combining all observations, the 2 upperlimit (E > 70 MeV) on the flux for the phase interval in which X-ray emission has been detected is 1.0 × 10-6 ph cm-2 s-1 and for the phase intervals in which ultra-high-energy (E 500 GeV) gamma-ray emission has been reported 1.0 × 10-7 ph cm-2 s-1. This is about one and two orders of magnitude, repectively, below the flux reported earlier by the SAS-2 team. A comparison of the spatial gamma-ray distribution in the Cyg-X region measured by SAS-2 and COS-B with the total-interstellar-gas distribution leads to the conclusion that in both cases, COS-B and SAS-2, no source has been detected at the position of Cyg X-3 in addition to the diffuse gamma-ray emission expected from the total-gas distribution.The Caravane Collaboration for the COS-B satellite: Laboratory for Space Research Leiden, Leiden, The Netherlands Istituto di Fisica Cosmica del CNR, Milano, Italy Istituto di Fisica Cosmica e Informatica del CNR, Palermo, Italy Max Planck Institut für Physik und Astrophysik, Institut für Extraterrestrische Physik, Garching-bei-München, Germany Service d'Astrophysique, Centre d'Etudes Nucléaires de Saclay, France Space Science Department of the European Space Agency, ESTEC, Noordwijk, The Netherlands.  相似文献   

14.
We present the results of the spectral and timing analysis of an observation of GX9+1/4U1758-205 performed with the Medium Energy Experiment aboard EXOSAT. During our observation the source flux varied irregularly in time scales from minutes to hours. No periodic emission in the period range from 16 msec to 2000 sec was found with an upper limit of around 1% (3 ) for the pulsed fraction. The hardness ratio shows a correlated change with the flux intensity (Sco X-1 behaviour). The spectrum could be fitted by a double component model, a black body component (kT=1.16–1.26 keV) together with a thermal bremsstrahlung law (kT=13–15keV). The black-body temperature-black-body flux relation follows a Stefan Boltzmann law with RBB=15.3 km*D/10 kpc. No iron line was detected. The upper limit for the line equivalent width of a 6.7 keV iron emission line is 40 eV (1). The X-ray spectral behaviour of GX9+1 indicates, that this source belongs to the class of Low-Mass X-ray Binaries (LMXB).  相似文献   

15.
Electric currents permeate space plasmas and often have a significant component along the magnetic field to form magnetic flux ropes. A larger spatial perspective of these structures than from the direct observation along the satellite path is crucial in visualizing their role in plasma dynamics. For magnetic flux ropes that are approximately two-dimensional equilibrium structures on a certain plane, Grad-Shafranov reconstruction technique, developed by Bengt Sonnerup and his colleagues (see Sonnerup et al. in J. Geophys. Res. 111:A09204, 2006), can be used to reveal two-dimensional maps of associated plasma and field parameters. This review gives a brief account of the technique and its application to magnetic flux ropes near the Earth’s magnetopause, in the solar wind, and in the magnetotail. From this brief survey, the ranges of the total field-aligned current and the total magnetic flux content for these magnetic flux ropes are assessed. The total field-aligned current is found to range from ∼0.14 to ∼9.7×104 MA, a range of nearly six orders of magnitude. The total magnetic flux content is found to range from ∼0.25 to ∼2.3×106 MWb, a range of nearly seven orders of magnitude. To the best of our knowledge, this review reports the largest range of both the total field-aligned current and the total magnetic flux content for magnetic flux ropes in space plasmas.  相似文献   

16.
Interstellar dust detected by the dust sensor onboard Ulysses was first identified after the Jupiter flyby when the spacecraft's trajectory changed dramatically (Grün et al., 1994). Here we report on two years of Ulysses post-Jupiter data covering the range of ecliptic latitudes from 0° to –54° and distances from 5.4 to 3.2 AU. We find that, over this time period, the flux of interstellar dust particles with a mean mass of 3·10–13 g stays nearly constant at about 1·10–4, m–2 s–1 ( sr)–1, with both ecliptic latitude and heliocentric distance.Also presented are 20 months of measurements from the identical dust sensor onboard the Galileo spacecraft which moved along an in-ecliptic orbit from 1.0 to 4.2 AU. From the impact direction and speeds of the measured dust particles we conclude that Galileo almost certainly sensed interstellar dust outside 2.8 AU; interstellar particles may also account for part of the flux seen between 1 and 2.8 AU.  相似文献   

17.
为提高换热强度、解决设备内部高热流密度散热问题,采用实验方法研究R141b在不同直径(D=0.5mm和1.0mm)水平圆形微通道内的沸腾换热特性,分析了热流密度(q=2.0kW/m~2~47.6kW/m~2)、质量干度(x=0~0.6)、质量流速(G=111.11kg/(m~2·s)~333.33kg/(m~2·s))的变化对平均传热系数h的影响,探究不同情况下影响沸腾换热的主导因素。实验研究表明:平均传热系数h随热流密度q的增加而减小,在不同范围内减小速率有明显差异;热流密度q=2kW/m~2~5kW/m~2时质量流速G对平均传热系数h影响较明显,热流密度较高时质量流速G对换热影响很小;在质量流速G=111.11kg/(m~2·s)~333.33kg/(m~2·s),质量干度x0.3时,平均传热系数h随质量干度x增加而明显下降,在设计微通道换热器时应尽量使R141b处于初始沸腾阶段以获得更好换热效果,并采取一定措施预防干度过高引起的换热恶化。  相似文献   

18.
Results of the observations of Geminga (2CG 195 + 4) in the energy range E 1012 eV, carried out in 1979, 1981, and 1983 with the Tien Shan high-altitude facility for recording the erenkov flashes of extensive air showers are reported. The mean flux density averaged over the whole protracted data is (5.7 ± 2.5) × 10–11 quanta cm–1 s–1. The flux is variable with a period 59 s. The character of the period variation with time is hard to be reconciled with earlier findings by other authors. The importance of further simultaneous observations at various energies is indicated.  相似文献   

19.
超临界压力下碳氢燃料在竖直圆管内换热特性   总被引:12,自引:4,他引:12  
以国产航空煤油RP-3为对象研究了超临界压力下热流密度和进口温度对碳氢燃料在竖直向上管和竖直向下管的换热特性的影响.实验中热流密度变化范围为300~600kW/m2,进口温度变化范围为293~723K,压力及流量分别保持为5MPa以及3g/s.研究表明:在所有实验工况下,实验进口处将首先出现换热恶化现象,之后随着热边界层的充分发展换热逐渐增强;当管内流体状态从超临界压力液态过渡到超临界状态,由于物性的显著变化将导致换热沿管程方向得到显著强化.当进口油温超过其拟临界温度后,由于碳氢燃料吸热能力迅速降低导致管内出现了换热恶化.对于竖直向上流与竖直向下流,即使浮升力判断因子的值小于10-5,浮升力的影响仍然不能忽略.最后,在实验结果基础上,提出了超临界压力碳氢燃料在微细管内流动的强迫对流换热经验关系式.   相似文献   

20.
The experimental measurements of the neutron flux and energy spectrum in space since 1964 are reviewed and related to the theoretical predictions. A discussion of the neutron sources is presented. The difficulties associated with neutron measurements of both the atmospheric neutron leakage flux and solar neutrons are included. Particular emphasis is placed upon the neutron leakage flux and energy measurements at energies greater than about 1 MeV. The possibilities of CRAND as a source for the energetic trapped protons are discussed in light of recent measurements of the 10–100 MeV neutron flux. The current status of the solar neutron flux observations is also presented.The primary purposes of neutron measurements in space have been to determine the neutron leakage flux from the atmosphere of the Earth and the solar neutron flux. As a consequence of the inefficient methods for neutron detection and the difficulties of conducting the measurements in the presence of the galactic and solar cosmic-ray backgrounds, the experimental results are very conflicting. It is the purpose of this review to interpret and discuss recent neutron measurements. In order to understand these results the theoretical predictions of the neutron fluxes and energy spectra from possible neutron sources will be briefly presented. Since comparisons of the different neutron measurements depend critically upon the experimental techniques, we will briefly discuss neutron detection methods applicable to space measurements. The emphasis will be upon measurements since 1964 made outside the Earth's atmosphere, but considerable reference will be made to high energy neutron experiments conducted within the Earth's atmosphere at < 10g cm-2 altitude. A review of earlier neutron measurements of terrestrial and solar neutrons has been made by Haymes (1965).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号