共查询到20条相似文献,搜索用时 48 毫秒
1.
本文在多模型架构下,提出一种航空发动机传感器在线混合故障检测与隔离算法。利用长短期记忆网络逼近航空发动机建模误差、健康参数变化、过程噪声和测量噪声等不确定性源引起的真实发动机与机载模型之间的偏差。将传感器测量输出与不确定性值的偏差用于一种基于多模型的混合卡尔曼滤波器组算法中,利用贝叶斯方法计算每个传感器在健康模式和不同故障模式下的条件概率,然后根据最大概率准则进行传感器故障检测与隔离,克服了阈值难以选取的问题。针对某型涡扇发动机传感器发生偏置故障、漂移故障和间歇性故障的情形进行仿真验证,并对比了不同传感器之间的检测与隔离精度。结果表明:所提出的方法可以在更高水平的退化下诊断出发动机传感器常见的故障,混合方法对不同不确定性源具有鲁棒性。 相似文献
2.
3.
基于动态云BP网络的液体火箭发动机故障诊断方法 总被引:2,自引:1,他引:2
将云模型与BP(back propagation)神经网络以串联方式有机结合,首先利用云变换方法进行网络的结构辨识和云模型的特征提取,同时通过在输入层引入单位延时环节描述发动机工作过程动态特性,研究提出了基于动态云BP网络的液体火箭发动机故障诊断方法.结合实际试车数据的验证结果表明,该方法能够准确识别发动机已有的3种故障模式,通过在试车数据中添加0期望、0.2标准差的随机噪声的方法来模拟环境噪声和测试过程中产生的随机噪声,根据持续性原则,方法仍能够正确进行故障检测与分类.方法单步运行时长为1.124×10-4s,完全能够满足实时性要求. 相似文献
4.
为了在符号有向图(SDG)模型中进行多故障诊断,提出了基于改进符号有向图(ISDG)模型的多故障诊断方法.ISDG模型满足了不完全信息条件下的多故障组合诊断的需求.通过交互式方法构建不完全信息条件下的诊断过程,利用最大增益费用比确定了最优的测试序列,实现了在多故障诊断过程中效率的提高和成本的降低.最后用交互式算法诊断某民用发动机引气系统多故障,ISDG模型能够诊断多故障,说明诊断多故障可以提高诊断效率;考虑组合逻辑后,最小费用比最大费用减小了7.25,增益费用比增大了32.2%,说明考虑组合逻辑可以减少32.2%的费用. 相似文献
5.
基于RBF神经网络的航空发动机故障诊断模型 总被引:1,自引:1,他引:1
利用某型发动机地面定检状态实测数据作为学习样本,采用径向基函数(RBF)神经网络建立发动机的故障诊断模型。通过该模型对起飞状态实测的发动机参数进行了辨识,结果表明:这种方法具有训练时间短、学习速度快、诊断精度高等优点。 相似文献
6.
基于云关联度的航空发动机传感器、部件故障识别系统设计 总被引:3,自引:0,他引:3
针对灰色关联度方法用于发动机故障诊断精度低的问题,结合云理论和关联度分析方法,提出了云关联度方法,利用“云滴”能够反映映射的模糊性和随机性与整体“形状”变化分布这一特性,克服数据挖掘的模糊性和随机性问题,采用综合隶属度方法能够充分对数据进行挖掘,最终计算出云关联度.为了实现航空发动机传感器、部件单一故障的实时识别和诊断,在分析航空发动机传感器故障和部件故障特点的基础上,利用云关联度方法,设计了航空发动机传感器、部件故障的识别系统.仿真结果表明该方法不仅能够实时正确区分航空发动机传感器、部件故障,还能准确诊断出故障发生的传感器或者部件的位置,有效地改善了航空发动机故障诊断能力. 相似文献
7.
航空发动机故障诊断的机载自适应模型 总被引:3,自引:3,他引:3
提出了复合拟合法建立状态变量模型,该方法应用于建立高维状态变量模型时,具有较高的精度.将健康参数作为增广的状态变量,设计了卡尔曼滤波器,从而可以根据可测参数的偏离量估计得到健康参数.为了减少自适应模型与真实发动机之间的建模误差,在自适应模型中加入神经网络对稳态基点模型进行修正,从而提高了故障诊断系统的置信度. 相似文献
8.
9.
基于数据驱动的航空发动机故障诊断与预测方法综述 总被引:2,自引:0,他引:2
航空发动机故障诊断与预测是航空发动机健康管理的重要内容,基于数据驱动的故障诊断和预测技术是航空发动机故障和预测领域广泛应用的方法。本文总结了基于数据驱动的航空发动机故障诊断与预测的主要方法及特点,展望了航空发动机故障和预测方法的未来发展方向。 相似文献
10.
航空发动机的故障诊断研究在民航安全发面有着重要的意义,而故障诊断模型的建立尤其关键。采用径向基函数(RBF)神经网络建立发动机的故障诊断模型,论述了径向基函数神经网络的结构、学习和运行,并通过该模型对发动机参数进行辨识,结果表明RBF神经网络具有较高的故障诊断正确率。 相似文献
11.
12.
航空发动机滑油中舍有摩擦副产生的磨损微粒。通过滑油介质中所含磨损微粒中元素的分析.运用Dempster-Shafer证据融合诊断方法,对航空发动机的磨损状态等进行有效的诊断,确定发动机的磨损程度,以及发动机的磨损部位,从而可对发动机的故障排除作参考。在融合过程中提出了先对每个元素的磨损量和磨损率进行融合,再总体融合的方法。针对Dempster—Sharer证据融合的局限,应用了两种改进的融合方法,并进行比较。实例表明,Dempster—Shafer证据融合是一种有效的航空发动机滑油磨损的故障诊断方法。 相似文献
13.
基于粗糙集理论的航空发动机故障诊断 总被引:8,自引:0,他引:8
在利用神经网络诊断航空发动机故障的过程中,引入粗糙集理论和方法,对故障诊断特征参数属性进行属性约简,剔除其中不必要的属性,从而揭示了故障诊断条件属性内在的冗余性,降低了神经网络构成的复杂性,最后给出了属性约简的结果。 相似文献
14.
15.
针对航空发动机故障诊断的实际问题,给出了模糊Petri 网的定义,同时在各类模糊式规则的基础上,建立了故障诊断
推理方法及故障原因判断准则。通过对航空发动机滑油系统最小滑油压力信号灯燃亮故障的实例分析,将Delphi 法与模糊Petri
网结合,综合2 种方法的优势,采用反向故障诊断,用Delphi 法计算出所有可能的故障原因的置信度,验证了Delphi- 模糊Petri
网在故障诊断方面的有效性与所建立模型的可行性,为航空发动机的故障定位与故障原因推理提供了1种可行方法。 相似文献
16.
17.
为了深入研究航空发动机故障机理,提出基于航空燃气涡轮发动机性能仿真软件(GSP)和堆栈降噪自编码器(SDAE)的航空发动机故障诊断方法。通过GSP性能仿真方法模拟发动机在不同设计参数下的部件故障,并得到对应的运行状态参数;从每种故障类型下的长时间序列的状态参数中提取出向量化的曲线特征,构成故障样本;将故障样本带入SDAE模型中进行深度特征提取,经过前向传播和反向微调得到训练好的模型用于发动机故障诊断。结果表明:GSP能够通过参数更改来模拟微弱故障下的状态参数,从而构建多故障样本集;SDAE的重构误差和反向传播误差能够快速收敛到较小值,SDAE的故障诊断正确率为99.5%;与深度信念网络(DBN)、人工神经网络(ANN)以及经典机器学习方法支持向量机(SVM)相比,SDAE的故障分类正确率分别提高了0.8%、6.9%和10.1%。 相似文献
18.
飞机发动机故障诊断需要厂家提供的诊断知识和不断积累的专家实践经验,具有不完备性。基于粗糙集理论,研究了一种从不完备诊断信息中获取诊断知识的方法。该方法将厂家提供的飞机发动机故障诊断知识和专家实践经验形成统一的诊断信息表,利用粗糙集的知识约简方法处理,获得一致的诊断规则,为飞机数字化维修技术的实现提供了保障。实例分析结果验证了所提出方法的有效性和优越性. 相似文献
19.
在阐述了小波变换和BP神经网络概念的基础上,根据小波神经网络故障诊断的基本思想,提出了一种基于“能量-故障”的小波预处理神经网络航空发动机诊断方法。实验仿真结果表明,使用该方法提取故障特征加快了神经网络的训练速度,能迅速地进行故障的诊断。 相似文献