首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 62 毫秒
1.
补燃循环发动机关机过程仿真研究   总被引:1,自引:1,他引:0       下载免费PDF全文
陈宏玉  刘红军  陈建华  洪流 《推进技术》2016,37(12):2219-2225
以补燃循环液氧煤油发动机系统为研究对象,对其关机特性进行了研究。在分析发动机系统工作原理的基础上,应用模块化建模的思想,建立了该系统中各主要部件的数学模型;采用新的面向对象仿真语言Modelica和MWorks平台,开发了可扩展的发动机仿真模型库;在此基础上,利用模型库搭建了液氧煤油补燃循环发动机关机过程仿真模型,并对发动机关机过程进行了仿真计算,计算结果表明与试车数据基本相符,其中稳态相对误差小于5%,动态相对误差小于15%,初步验证了所建仿真模型的正确性;进一步分析了吹除气体压力、阀后腔道容积、关机工况等因素对发动机关机过程的影响。  相似文献   

2.
刘红军 《推进技术》2021,42(7):1476-1482
针对未来航天主发动机的应用需求,提出了一种燃料供应系统采用开式循环、氧化剂供应系统采用分级燃烧闭式循环的半开式富氧补燃混合循环发动机系统方案,综合分析了这种新型混合循环发动机所能达到的比冲性能,对比分析了新型混合循环发动机作为可重复使用航天运载器主发动机相比于开式循环和常规补燃循环、全流量补燃循环发动机的优缺点,针对推...  相似文献   

3.
全流量补燃循环试验发动机启动过程   总被引:1,自引:0,他引:1       下载免费PDF全文
分析了全流量补燃循环发动机系统启动过程难点,针对全流量补燃循环缩尺发动机热试车启动过程,分别就发动机中富燃/富氧预燃室的自身启动和相对启动过程进行了设计;采用管路-体积组合模块化方法,建立了发动机启动过程仿真模型,进行了仿真计算。按设计启动方案进行了多次热试车,试车结果表明发动机点火可靠,启动过程平稳,无烧蚀现象,且仿真结果很好地预示了热试车情况。  相似文献   

4.
液氧/煤油补燃发动机低频频率特性研究   总被引:1,自引:5,他引:1  
基于模块化层次化的建模技术,建立液氧/煤油补燃发动机的线性小扰动频率特性仿真模型.在建模过程中,重点考虑了绝热流动假设和熵波影响下的气路模型.依据交流流体网络理论,运用传递函数法分析了该型发动机的低频频率特性,为研究液体火箭的纵向耦合振动(POGO)及发动机动力学提供帮助.   相似文献   

5.
为降低液氧煤油补燃发动机起动所需入口压力,需解决起动过程氧预压泵起旋迟缓产生附加阻力导致主泵入口压力过低而发生断裂汽蚀的问题。开展了两种预压泵加速起旋方案研究,分别为已工程应用的液氧涡轮方案和本文提出的氦起动涡轮方案。对比介绍了两种方案对发动机气液系统和预压泵结构的影响。建立了预压泵加速起旋相关的数学模型,针对加速起旋机理、效果和影响因素等进行了仿真分析。结果表明:液氧涡轮方案,预压泵结构变化较小,为提升加速起旋效果,涡轮供应路应尽量增大通径、缩短长度,降低动态流阻和静态流阻,涡轮喷嘴流通面积则需根据其对涡轮流量和压降的综合影响来选择。氦起动涡轮方案,预压泵结构和流路变化较大,起动涡轮速比和效率是降低氦气用量的限制性因素。  相似文献   

6.
为了搭建更加精确的离心泵汽蚀工况的性能预测模型,将汽蚀工况下的泵内流动分为入口段和出口段分别计算流量,以两段流量之差确定泵内空泡体积,进而确定汽蚀的扬程相对降低系数。通过5种型号泵的仿真结果与水试结果对比验证了该建模方法的通用性和准确性,最大计算偏差出现在第二临界点附近,约为1%;针对热试中汽蚀故障进行仿真复现,和热试结果对比验证了该故障建模方法的有效性。在此基础上开展了补燃循环液氧煤油发动机氧化剂泵汽蚀故障的注入与仿真,结果表明:预压泵入口压力降低能够导致氧化剂泵汽蚀;汽蚀工况下,氧化剂主泵扬程降低、流量减少并且转速升高;进而导致燃气发生器混合比趋向当量比、温度升高,与理论分析和试车以及发射中故障结果相吻合。最低允许预压泵入口压力为53%额定入口压力,继续降低压力会导致燃气发生器温度超过临界温度,存在产生毁灭性后果的危险。  相似文献   

7.
补燃循环液体火箭发动机启动过程的模块化仿真   总被引:3,自引:4,他引:3       下载免费PDF全文
黄敏超  王新建  王楠 《推进技术》2001,22(2):101-103
通过模块化编程,建立了新一代高性能补燃发动机启动过程的部件模型。虽然采用的是集中参数方法,但同时考虑了液体的惯性、粘性和压缩性,所以建立的常微分方程组能在一定程度上反映发动机工作过程的分布特性。  相似文献   

8.
我国新一代载人火箭液氧煤油发动机   总被引:4,自引:0,他引:4  
分析了国内外载人火箭主动力的发展情况与发展趋势,介绍了我国1200 kN和180 kN两型液氧煤油发动机的研制历程、系统组成、工作原理、性能参数、关键技术和应用情况。两型发动机突破了补燃循环、自身起动、大范围工况调节、高效稳定燃烧、高压推力室冷却、反力式涡轮、大范围轴向力平衡、低温高DN值轴承、组合式涡轮泵密封、大直径低温阀、高精度调节器、推力矢量控制等关键技术。目前,两型发动机研制工作已基本完成,将成为我国新一代载人火箭的动力组合,实现我国航天主动力的更新换代。  相似文献   

9.
程志坚 《推进技术》1987,8(1):54-59
液体火箭发动机采用高压补燃系统,可以最大限度地利用燃料的化学能,是第二代航天技术动力装置的发展方向.本文介绍了可贮存推进剂发动机高压补燃系统的特点和有关的技术问题.  相似文献   

10.
谭永华  杜飞平  陈建华  张淼 《推进技术》2018,39(6):1201-1209
鉴于重复使用运载器对动力系统的技术需求,以我国新一代运载火箭主动力液氧煤油高压补燃循环发动机为研究对象,建立了多参数、非线性以及强耦合的发动机系统仿真平台。在分析国内外变推力液体火箭发动机技术特点的基础上,根据液氧煤油发动机单路推力调节的仿真结果,首次提出了发生器燃料路流量调节器调节、主涡轮前燃气分流以及氧化剂主路节流等相结合,并辅助以气体乳化提高喷注器压降的组合深度推力调节方案。仿真结果表明:发动机推力调节能力可达10:1,且能实现多次点火起动,具有性能高、调节范围大的优点。  相似文献   

11.
补燃循环液体火箭发动机输送系统的频率特性   总被引:3,自引:1,他引:3       下载免费PDF全文
以某大型泵压式补燃循环液体火箭发动机的输送系统为研究对象,采用两种动态数学模型:在低频区域为集中参数法,在中频区域为分布参数法,进行了发动机动态特性的评估、发动机调节系统的分析,为发动机系统稳定性研究以及火箭飞行中的纵向稳定性计算提供原始数据。  相似文献   

12.
液氧/煤油发动机稳态参数分布特性的仿真   总被引:1,自引:2,他引:1       下载免费PDF全文
刘红军 《推进技术》2004,25(5):385-387
以某型液氧 煤油高压补燃火箭发动机为模型,利用随机仿真(蒙特卡罗仿真)的方法,研究在主要结构参数和发动机入口参数随机变化时发动机稳态参数的分布规律。通过对该发动机非线性稳态特性方程组进行大量的仿真计算并对结果进行统计推断,获得了发动机稳态参数的概率密度分布特性。考虑的随机变化因素包括:系统结构参数与组件性能参数变化、推进剂供应系统入口压力变化和环境温度变化等。  相似文献   

13.
大推力氢氧发动机的频率特性仿真研究   总被引:1,自引:1,他引:0  
王珏  张振鹏 《航空动力学报》2008,23(12):2341-2345
采用传递矩阵法对某大推力氢氧火箭发动机系统的频率特性进行了仿真分析.首先建立发动机系统管路和部组件的频域线性化数学模型,并根据系统管路和部件的联接关系,简化系统模型,构成了联系扰动量和系统变量的线性方程组,进一步求解得到扰动量作用下系统变量的频率响应特性.通过仿真对比发现燃气发生器循环与分级燃烧循环的氢氧火箭发动机系统频率特性有显著差异.   相似文献   

14.
富氧补燃循环发动机启动过程   总被引:1,自引:0,他引:1  
启动过程是液体火箭发动机研制中的重点和难点,解决大推力补燃循环发动机启动问题的主要措施应为:通过控制预燃室的燃料流量以有效地将预燃室的组元比控制在合理的范围内,并可以控制发动机的启动速率;燃烧室点火时预燃室应有较高的压力,同时应通过推力室燃料路的节流来减小燃烧室压力的上升速率;对于自身启动发动机,较高的入口压力有利于发动机启动。这些措施解决了富氧补燃循环发动机的启动问题,可供同类发动机的研制借鉴。  相似文献   

15.
采用一维分布参数模型描述发动机的管路系统,将发动机各部件和管路的线性化模型表示为联系输入输出参数的传输矩阵形式。根据发动机各部件的连接关系,将发动机系统划分为若干模块,用矩阵变换的方法求得发动机各模块的传输矩阵,构成发动机系统方程组。   相似文献   

16.
针对液体火箭发动机氧化剂泵的汽蚀过程,使用入口NPSH(net positive suction head)代替入口压力作为汽蚀发生的判据和入口质量流量的计算方法,并通过模型与试验结果的对比发现以扬程下降1.25%作为断裂汽蚀发生点的模型具有良好的精度。后续开展发动机低于额定入口压力的起动仿真,结果表明:62%及以上额定压力能够正常起动;45%及以下额定压力起动失败,原因是燃气发生器温度过高。主要存在0.4~0.6 s,0.4~0.85 s和0.4~1.2 s三个时间段的严重汽蚀,分别对应氧主阀打开、主涡轮转速的快速爬升和燃气发生器参数波动。氧化剂主泵汽蚀主要影响燃气发生器和推力室,次要影响燃料供应路组件,轻微影响主涡轮。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号