首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
If the path of the neutral line on the coronal source surface is expressible as a singlevalued function (colatitude vs longitude ), then Fourier analysis of ctn with respect to leads to a simple algorithm for realistically mapping the neutral line outward to model the heliospheric current sheet (HCS) at distancesr1 AU. To be compatible with MHD, the source surface used for this mapping should be prolate (aligned with dipole axis) rather than spherical. Orientation of the Sun's magnetic-dipole moment is indicated by them=1 Fourier amplitude (a 1 sin +b 1 cos ) of ctn on the source surface. Physical features (including the neutral line) on a prolate source surface intrinsically map to lower dipole latitudes atr1 AU in the heliosphere, and Ulysses observations of a unipolar field at latitudes beyond 30°S (when the neutral line on the source surface still reached 39°S) confirm the expected geometry.  相似文献   

2.
Since the baryon-to-photon ratio 10 is in some doubt at present, we ignore the constraints on 10 from big bang nucleosynthesis (BBN) and fit the three key cosmological parameters (h, M, 10) to four other observational constraints: Hubble parameter (ho), age of the universe (to), cluster gas (baryon) fraction (fo fGh3/2), and effective shape parameter (o). We consider open and flat CDM models and flat CDM models, testing goodness of fit and drawing confidence regions by the 2 method. CDM models with M = 1 (SCDM models) are accepted only because we allow a large error on ho, permitting h < 0.5. Open CDM models are accepted only for M 0.4. CDM models give similar results. In all of these models, large 10 ( 6) is favored strongly over small 10 ( 2), supporting reports of low deuterium abundances on some QSO lines of sight, and suggesting that observational determinations of primordial 4He may be contaminated by systematic errors. Only if we drop the crucial o constraint are much lower values of M and 10 permitted.  相似文献   

3.
Høg  E.  Pagel  B.E.J.  Portinari  L.  Thejll  P.A.  Macdonald  J.  Girardi  L. 《Space Science Reviews》1998,84(1-2):115-126
The primordial helium abundance YP is important for cosmology and the ratio Y/Z of the changes relative to primordial abundances constrains models of stellar evolution. While the most accurate estimates of YP come from emission lines in extragalactic H II regions, they involve an extrapolation to zero metallicity which itself is closely tied up with the slope Y/Z. Recently certain systematic effects have come to light in this exercise which make it useful to have an independent estimate of Y/Z from fine structure in the main sequence of nearby stars. We derive such an estimate from Hipparcos data for stars with Z Z and find values between 2 and 3, which are consistent with stellar models, but still have a large uncertainty.  相似文献   

4.
A series of spectacular cosmic ray events which included two relativistic solar particle enhancements and three major Forbush decreases were registered by ground-based cosmic ray monitoring stations beginning 4 August, 1972. These were associated with four major proton flare events on the Sun and with large interplanetary magnetic field disturbances and high velocity shock waves. This review attempts to discuss and interpret the high energy cosmic ray phenomena observed during this period in the light of the known behaviour of low energy particulate flux, interplanetary plasma and field observations and other associated solar and terrestrial effects recorded during this period.The first Forbush decrease event FD-1 occurred in the early hours of 4 August, exhibiting very strong north-south and east-west anisotropies. Immediately following the onset of FD-1, the first ground level solar particle enhancement occurred. This event, which had its onset almost 6 h after the flare event on 4 August, had a very steep rigidity spectrum. The major Forbush event of the series which had its onset at 2200 UT on 4 August, exhibited extremely interesting and complex behaviour, the prominent features of which are a precursory increase prior to the onset (PI-1), a large decrease (FD-2), the largest observed to date, followed immediately by an abrupt square wave like enhancement (PI-2). Interplanetary space during this entire period was highly disturbed by the presence of large low energy particulate fluxes and shock waves, at least one of which had a velocity exceeding 2000 km s-1. Large north-south and east-west anisotropies existed throughout the event. Both FD-2 and PI-2 were characterized by almost the same rigidity spectrum, with a power law index of -1.2 ± 0.2, and a predominant anisotropy along the sunward direction. The square wave-like spike PI-2 during the recovery of FD-2 was associated with a similar abrupt change in low energy particle flux in space, as well as an abrupt decrease in the interplanetary magnetic field value from 50 to 10 .Based on the available particle, field and plasma observations, an unified model is presented to explain the Forbush event in terms of a transient modulating region associated with the passage of a narrow magnetic shock front. In this model, the reflection of particles from the approaching shock front account for the precursory increase PI-1. The main Forbush event is caused when the magnetic barrier at the shock front sweeps past the Earth. The square wave increase is due to the enhanced flux contained in the magnetic well just behind the shock front and bounded by magnetic discontinuities, which is explained as due to the transverse diffusion of particles into this region from the interplanetary space which have easy access to this region. In situ plasma, field and low energy particle observations are reviewed to support the model.Also Professor at Physical Research Laboratory, Ahmedabad 380009, India.  相似文献   

5.
Using the Hubble Space Telescope (HST) and the Faint Object Spectrograph (FOS) high signal to noise spectrograms were obtained for 15 OB stars in the Magellanic Clouds***, three of which are of spectral type O3. The data cover the spectral region from 1150 A – 2300 A with a resolution of /1 A. One O8.5 supergiant, OB78#231, in M31is also included in this work. These data are a substantial improvement on previous high resolution IUE observations in the Magellanic Clouds (Walborn et al. 1985 and references therein) because of the smaller aperture and the much better signal to noise ratio, while no high resolution UV spectra of O stars in M31 have been obtained before. In this paper we discuss various morphological aspects of the spectra, concerning metallicity and the stellar winds, compared to galactic analogues.  相似文献   

6.
Measurements of the intensities and profiles of UV and EUV spectral lines can provide a powerful tool for probing the physical conditions in the solar corona out to 8 R and beyond. We discuss here how measurements of spectral line radiation in conjunction with measurements of the white light K-corona can provide information on electron, proton and ion temperatures and velocity distribution functions; densities; chemical abundances and mass flow velocities. Because of the fundamental importance of such information, we provide a comprehensive review of the formation of coronal resonance line radiation, with particular emphasis on the H i L line, and discuss observational considerations such as requirements for rejection of stray light and effects of emission from the geocorona and interplanetary dust. Finally, we summarize some results of coronal H i L and white light observations acquired on sounding rocket flights.Paper presented at the IX-th Lindau Workshop The Source Region of the Solar Wind.  相似文献   

7.
Recent studies suggest that when magnetohydrodynamic (MHD) turbulence is excited by stirring a plasma at large scales, the cascade of energy from large to small scales is anisotropic, in the sense that small-scale fluctuations satisfy the inequality k k , where k and k are, respectively, the components of a fluctuations wave vector and to the background magnetic field. Such anisotropic fluctuations are very inefficient at scattering cosmic rays. Results based on the quasilinear approximation for scattering of cosmic rays by anisotropic MHD turbulence are presented and explained. The important role played by molecular-cloud magnetic mirrors in confining and isotropizing cosmic rays when scattering is weak is also discussed.  相似文献   

8.
Plasma waves at the dayside magnetopause   总被引:1,自引:0,他引:1  
Experimental investigations of plasma waves at the magnetopause, including recent results from the AMPTE/IRM satellite, show that both E and B fluctuations typically have a featureless spectrum which monotonically decreases with frequency; integrated rms amplitudes are typically a few mV m-1 for E and 10 nT for B, though in particular E can be as much as an order of magnitude larger in exceptional cases. Surveys show a lack of correlation between wave parameters and the magnetopause parameters. Under the assumption that crossing the diffusion region would give a pronounced signature in the waves, the survey data allow an upper limit to be placed on the latitudinal extent of the diffusion region, which is about 1000 km — implying that it is not surprising that the wave data surveys have so far failed to detect it. The observed wave turbulence levels have been used to estimate diffusion coefficients under different assumptions for the wave mode, but the resulting diffusion coefficient is always too small to explain either reconnection or boundary layer formation. Recent work of Galeev et al. (1986) indicates that the dominant diffusion process may be magnetic field migration, which is a macroscopic process involving the interaction of tearing mode islands. Assuming this mode to be present at the observed level of B, a particle diffusion coefficient of nearly 109 m2 s-1 is obtained. Another macroscopic diffusive process which could occur at the magnetopause is stochastic E × B scattering, which also implies a diffusion coefficient the order of 109 m2 s-1 if the observed E spectrum is assumed to be a turbulent cascade consisting of convective cells.  相似文献   

9.
Collective radiation processes operating in laboratory and space plasmas are reviewed with an emphasis towards astrophysical applications. Particular stress is placed on the physics involved in the various processes rather than in the detailed derivation of the formulas. Radiation processes from stable non-thermal, weakly turbulent and strongly turbulent magnetized and unmagnetized plasmas are discussed. The general theoretical ideas involved in amplification processes such as stimulated scattering are presented along with their application to free electron and plasma lasers. Direct radio-emission of electromagnetic waves by linear instabilities driven by beams or velocity anisotropies are shown to be of relevance in space applications. Finally, as an example of the computational state of the art pertaining to plasma radiation, a study of the type III solar radio bursts is presented.

Frequently used Symbols

Latin Symbols teB 0 ambient magnetic field - B 1 perturbed magnetic field - c speed of light - E 1 perturbed electric field - H Heaviside function - I unit dyadic - k wavevector of radiation fields - K D inverse Debye length - m, M electron and ion mass - T e , T i electron and ion temperature - u relativistic velocity - V e , V i electron and ion thermal speeds - V P , V g wave phase and group velocities - W wave spectral energy density Greek Symbols relativistic factor - plasma dielectric tensor - L , T longitudinal and transverse components of in isotropic media (i.e., =kk L /k 2+(lkk/k 2) T ) - index of refraction - angle between k and B 0 - plasma dispersion tensor (i.e. =(c 2/ 2)(kkk 2 l)+) - determinant of - D Debye length - e electron cyclotron frequency - u upper hybrid frequency - wave frequency - e electron plasma frequency Proceedings of the NASA/JPL Workshop on the Physics of Planetary and Astrophysical Magnetospheres.National Research Council/Naval Research Laboratory Research Associate.  相似文献   

10.
In this review, current state of knowledge of high resolution observations at decameter wavelengths of the quiet Sun, the slowly varying component (SVC), type I to V bursts and noise storms is summarized. These observations have been interpreted to yield important physical parameters of the solar corona and the dynamical processes around 2R from the photosphere where transition from closed to open field lines takes places and the solar wind builds up. The decametric noise bursts have been classified into (i) BF type bursts which show variation of intensity with frequency and time and (ii) decametric type III bursts. The angular sizes of noise storm sources taking into account refraction and scattering effects are discussed. An attempt has been made to give phenomenology of all the known varieties of decametric bursts in this review. Available polarization information of decametric continuum and bursts has been summarized. Recent simultaneous satellite and ground-based observations of decametric solar bursts show that their intensities are deeply modulated by scintillations in the Earth's ionosphere. Salient features of various models and theories of the metric and decametric noise storms proposed so far are examined and a more satisfactory model is suggested which explains the BF type bursts as well as conventional noise storm bursts at decametric wavelengths invoking induced scattering process for 1 t conversion. Some suggestions for further solar decametric studies from the ground-based and satellite-borne experiments have been made.  相似文献   

11.
Magnetic reconnection provides an efficient conversion of the so-called free magnetic energy to kinetic and thermal energies of cosmic plasmas, hard electromagnetic radiation, and accelerated particles. This phenomenon was found in laboratory and space, but it is especially well studied in the solar atmosphere where it manifests itself as flares and flare-like events. We review the works devoted to the tearing instability — the inalienable part of the reconnection process — in current sheets which have, inside of them, a transverse (perpendicular to the sheet plain) component of the magnetic field and a longitudinal (parallel to the electric current) component of the field. Such non-neutral current sheets are well known as the energy sources for flare-like processes in the solar corona. In particular, quasi-steady high-temperature turbulent current sheets are the energy sources during the main or hot phase of solar flares. These sheets are stabilized with respect to the collisionless tearing instability by a small transverse component of magnetic fiel, normally existing in the reconnecting and reconnected magnetic fluxes. The collision tearing mode plays, however, an important and perhaps dominant role for non-neutral current sheets in solar flares. In the MHD approximation, the theory shows that the tearing instability can be completely stabilized by the transverse fieldB n if its value satisfies the conditionB n /BS –3/4 B is the reconnecting component of the magnetic field just near the current sheet,S is the magnetic Reynolds number for the sheet. In this case, stable current sheets become sources of temporal spatial oscillations and usual MHD waves. The application of the theory to the solar atmosphere shows that the effect of the transverse field explains high stability of high-temperature turbulent current sheets in the solar corona. The stable current sheets can be sources of radiation in the radio band. If the sheet is destabilized (atB n /BS –3/4) the compressibility of plasma leads to the arizing of the tearing instability in a long wave region, in which for an incompressible plasma the instability is absent. When a longitudinal magnetic field exists in the current sheet, the compressibility-induces instability can be dumped by the longitudinal field. These effects are significant in destabilization of reconnecting current sheets in solar flares: in particular, the instability with respect to disturbances comparable with the width of the sheet is determined by the effect of compressibility.  相似文献   

12.
Quiet sun     
We underline the diagnostic strength of recent observations of the oscillating quiet Sun. While high quality (k, ) power spectra permit a better knowledge of the convection zone, long and continuous survey of oscillations of the integrated Sun provides an efficient sounding of the inner solar body.Proceedings of the Conference Solar Physics from Space, held at the Swiss Federal Institute of Technology Zurich (ETHZ), 11–14 November 1980.  相似文献   

13.
The magnetogram inversion technique (MIT) is based upon recordings of geomagnetic variations at the worldwide network of ground-based magnetometers. MIT ensures a calculation of a global spatial distribution of the electric field, currents and Joule heating in the ionosphere. Variant MIT-2 provides, additionally, continuous monitoring of the following parameters: Poynting vector flux from the solar wind into the magnetosphere (); power, both dissipated and accumulated in the magnetosphere; magnetic flux in the open tail; and the magnetotail length (l T) (distance between the dayside and nightside neutral points in the Dungey model). Using MIT-2 and data of direct measurements in the solar wind, an analysis is made of a number of substorms, and a new scenario of substorms is suggested. The scenario includes the convection model, the model with a neutral line and the model of magnetosphere-ionosphere coupling (outside the current sheet), i.e., the three known models. A brief review is given of these and some other substorms models. A new element in the scenario is the strong positive feedback in the primary generator circuit, which ensures growth of the ratio = / Aby an order of magnitude or more during the substorms. Here Ais the Pointing vector flux in the Akasofu-Perrault approximation, i.e., without the feedback taken into account. The growth of during the substorm is caused only by the feedback effect. It is assumed that the feedback arises due to an elongation of the magnetotail, i.e., a growth of l Tby a factor of (23) during the substorm.In the active phase of substorm, a part (the first active phase) has been identified, where the principal role in the energetics is played by the feedback mechanism and the external energy source (although the internal source plus reconnection inside the plasma sheet make a marked contribution). In the second active phase (expansion) the external generator (solar wind) is switched off, and the main role is now played by the internal energy source (the tail magnetic field and ionospheric wind energy).Models of DP-2 DP-1 transitions are also considered, as well as the magnetospheric substorm-solar flare analogy.  相似文献   

14.
The dynamics of dust particles in the solar system is dominated by solar gravity, by solar radiation pressure, or by electromagnetic interaction of charged dust grains with the interplanetary magnetic field. For micron-sized or bigger dust particles solar gravity leads to speeds of about 30 to 40 km s–1 at the Earths distance. Smaller particles that are generated close to the Sun and for which radiation pressure is dominant (the ratio of radiation pressure force over gravity F rad/F grav is generally termed ) are driven out of the solar system on hyperbolic orbits. Such a flow of -meteoroids has been observed by the Pioneer 8, 9 and Ulysses spaceprobes. Dust particles in interplanetary space are electrically charged to typically +5 V by the photo effect from solar UV radiation. The dust detector on Cassini for the first time measured the dust charge directly. The dynamics of dust particles smaller than about 0.1 m is dominated by the electromagnetic interaction with the ambient magnetic field. Effects of the solar wind magnetic field on interstellar grains passing through the solar system have been observed. Nanometer sized dust stream particles have been found which were accelerated by Jupiters magnetic field to speeds of about 300 km s–1.  相似文献   

15.
We study the simultaneous occurrence of ULF waves observed on board GEOS and at two of its conjugated stations: Husafell (Iceland) and Skibotn (Norway). We try to deduce some properties of the regions in which these waves are generated. The few number of simultaneous observations of pearl events indicates that such structured oscillations can occur only in specific conditions which are not met generally at the geostationary altitude. We introduce a new method for measuring time delays between the satellite and the ground. We show that this time is much higher than it would be expected from a simple extrapolation of measurements done at lower latitudes on structured events.  相似文献   

16.
Information can be obtained from energetic particle measurements through the chemical composition, energy spectrum, directional anisotropy, temporal and spatial intensity variations. This is equivalent to saying that there is a distribution functionf k(p,r,t) wherek corresponds to thekth particle species of momentump at positionr and timet.Particle transport is described by the Boltzmann equation, and because the densities are generally low in the case of cosmic rays or energetic solar flare particles, collective transport effects can be neglected. In the absence of magnetospheric motion it is relatively easy to treat the problems of particle transport as simple propagation of charged particles in a stationary magnetic field configuration using, for instance, trajectory calculations in model fields. The method here is to use correlated measurements of the particle distribution at two points along a dynamic trajectory, and in this way to learn something about the geomagnetic field. This approach provides a good basis from which to study magnetospheric dynamics. If the magnetosphere moves, large scale electric fields, turbulent electromagnetic fields and sources and sinks affect the propagation of energetic particles considerably. These effects change the distribution functionf k(p,r,t) and can thus be detected.In this paper, we shall show the importance of the single particle approximation (trajectories in a reference field) in forming the basis of our understanding of the quiet-time penetration of cosmic rays into the magnetosphere, we shall consider the steady dynamics such as wave-particle inter-action and field line reconnection, which is believed to exist nearly all the time, and finally we shall review the work which has been done in the much more complex and less well-understood field of impulsive dynamics such as geomagnetic storms and substorms. This last topic is only just beginning to be investigated in detail, and it is hoped that the study of impulsive dynamics, using energetic particles, may be as successful as the study of the quiet magnetosphere and the steady dynamics.  相似文献   

17.
Baryons observed in Ly absorbers contribute to the density parameter 0 by bar 0.06 in close agreement with the value of 0.06 from primordial nucleosynthesis (H0=55 km s-1 Mpc-1, = 0 assumed throughout). A number of methods are known to measure 0 from density fluctuations; bound structures tend to yield lower values (m 0.2-0.4), field galaxies over large scales higher, but still undercritical values (m 0.6 ± 0.2). The best compromise value is 0 0.5, but the present methods are blind to diffusely distributed, exotic matter which still could make 0 = 1. A satisfactory solution of 0 (and ) will only come from a fundamental cosmological test (e.g. the Hubble diagram of [evolution-corrected] supernovae type Ia) in combination with the CMB fluctuation spectrum.  相似文献   

18.
An instrument for advanced studies of the solar corona is described. Its optical system provides nearly stigmatic imaging of selected portions of the Sun over the spectral range from 22.5 to 44.0 nm. Both spectroheliograms and emission line profiles of coronal features will be obtained over a wide range of coronal temperatures.Proceedings of the Conference Solar Physics from Space, held at the Swiss Federal Institute of Technology Zurich (ETHZ), 11–14 November 1980.This paper was presented at the conference by U. Feldman.  相似文献   

19.
Freja is a Swedish scientific satellite mission to study fine scale auroral processes. Launch was October 6, 1992, piggyback on a Chinese Long March 2C, to the present 600×1750 km, 63° inclination orbit. The JHU/APL provided the Magnetic Field Experiment (MFE), which includes a custom APL-designed Forth, language microprocessor. This approach has led to a truly generic and flexible design with adaptability to differing mission requirements and has resulted in the transfer of significant ground analysis to on-board processing. Special attention has been paid to the analog electronic and digital processing design in an effort to lower system noise levels, verified by inflight data showing unprecedented system noise levels for near-Earth magnetic field measurements, approaching the fluxgate sensor levels. The full dynamic range measurements are of the 3-axis Earth's magnetic field taken at 128 vector samples s–1 and digitized to 16 bit, resolution, primarily used to evaluate currents and the main magnetic field of the Earth. Additional 3-axis AC channels are bandpass filtered from 1.5 to 128 Hz to remove the main field spin signal, the range is±650 nT. These vector measurements cover Pc waves to ion gyrofrequency magnetic wave signals up to the oxygen gyrofrequency (40 Hz). A separate, seventh channel samples the spin axis sensor with a bandpass filter of 1.5 to 256 Hz, the signal of which is fed to a software FFT. This on-board FFT processing covers the local helium gyrofrequencies (160 Hz) and is plotted in the Freja Summary Plots (FSPs) along with disturbance fields. First data were received in the U.S. October 16 from Kiruna, Sweden via the Internet and SPAN e-mail networks, and were from an orbit a few hours earlier over Greenland and Sweden. Data files and data products, e.g., FSPs generated at the Kiruna ground station, are communicated in a similar manner through an automatic mail distribution system in Stockholm to PIs and various users. Distributed management of spacecraft operations by the science team is also achieved by this advanced communications system.An exciting new discovery of the field-aligned current systems is the high frequency wave power or structure associated with the various large-scale currents. The spin axis AC data and its standard deviation is a measure of this high-frequency component of the Birkeland current regions. The exact response of these channels and filters as well as the physics behind these wave and/or fine-scale current structures accompanying the large-scale currents is being pursued; nevertheless, the association is clear and the results are used for the MFE Birkeland current monitor calculated in the MFE microprocessor. This monitor then sets a trigger when it is greater than a commandable, preset threshold. This event flag can be read by the system unit and used to remotely command all instruments into burst mode data taking and local memory storage. In addition,Freja is equipped with a 400 MHz Low Speed Link transmitter which transmits spacecraft hcusekeeping that can be received with a low cost, portable receiver. These housekeeping data include the MFE auroral zone current detector; this space weather information indicates the location and strength of ionospheric current systems that directly impact communications, power systems, long distance telephone lines and near-Earth satellite operations. The JHU/APL MFE is a joint effort with NASA/GSFC and was co-sponsored by the Office of Naval Research and NASA/Headquarters in cooperation with the Swedish National Space Board and the Swedish Space Corporation.Freja Magnetic Field Experiment Team  相似文献   

20.
We propose a technique to derive the coronal density irregularity factor , wheren is the electron density. The absolute photometric comparison between the intensity of UV lines and the white-light K-coronal polarized brightness (pB) provides an unique constraint on the inhomogeneity of the corona. The ratio of the measured H I Lyman (Ly-) line intensity to the resonant-scattering dominated H I Lyman (Ly-) intensity can be used to extract the collisonal component of the Ly-. This component yields an estimate of . The quantity is then obtained from white-light K-coronal measurements. The use of lines of the same atomic species minimizes the effects due to outflow velocities (i.e., Doppler dimming), and reduces the errors introduced by the uncertainties in the ionization balance, the atomic parameters, and the solar abundances. The UVCS/SOHO unique capability of performing cotemporal and cospatial measurements of the Ly- and Ly- lines, and ofpB makes this instrument ideal for implementing this technique.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号