首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到11条相似文献,搜索用时 46 毫秒
1.
Chromosomal aberrations induced by high-energy iron ions with shielding.   总被引:1,自引:0,他引:1  
Biophysical models are commonly used to evaluate the effectiveness of shielding in reducing the biological damage caused by cosmic radiation in space flights. To improve and validate these codes biophysical experiments are needed. We have measured the induction of chromosomal aberrations in human peripheral blood lymphocytes exposed in vitro to 500 MeV/n iron ion beams (dose range 0.1-1 Gy) after traversing shields of different material (lucite, aluminium, or lead) and thickness (0-11.3 g/cm2). For comparison, cells were exposed to 200 MeV/n iron ions and to X-rays. Chromosomes were prematurely condensed by a phosphatase inhibitor (calyculin A) to avoid cell-cycle selection produced by the exposure to high-LET heavy-ion beams. Aberrations were scored in chromosomes 1, 2, and 4 following fluorescence in situ hybridization. The fraction of aberrant lymphocytes has been evaluated as a function of the dose at the sample position, and of the fluence of primary 56Fe ions hitting the shield. The influence of shield thickness on the action cross-section for the induction of exchange-type aberrations has been analyzed, and the dose average-LET measured as a function of the shield thickness. These preliminary results prove that the effectiveness of heavy ions is modified by shielding, and the biological damage is dependent upon shield thickness and material.  相似文献   

2.
Inactivation and double strand break (dsb) induction after heavy ion irradiation were studied in stationary phase cells of the highly radiation resistant bacterium Deinococcus radiodurans R1. There is evidence that the radiation sensitivity of this bacterium is nearly independent on energy in the range of up to 15 MeV/u for lighter ions (Ar). The responses to dsb induction for charged particles show direct relationship between increasing radiation dose and residual intact DNA.  相似文献   

3.
Radiobiological effects of heavy charged particles are compared for a large variety of ions from Helium to Uranium and energies between 1 and 1000 MeV/u which correspond to LET values between 10 and 16000 keV/micrometers. The different cross section for the induction of strand breaks and chromosomal aberrations as well as for inactivation and mutation induction exhibit striking similarities when compared as function of the linear energy transfer (LET). At LET values below 100 keV/micrometers all data points of one specific effect form one single curve as a function of LET, independent of the atomic number of the ion. In this LET range, the biological effects are independ from the particle energy or track structure and depend only on the energy transfer. Therefore, LET is a good parameter in this regime. For LET values greater than 100 keV/micrometers, the curves for the different ions separate from the common curve in order of increasing atomic numbers. In this regime LET is no longer a good parameter and the physical parameters of the formation of particle tracks are important. The similarity of the sigma-LET curves for different endpoints indicates that the 'hook-structure' is produced by physical and chemical effects which occur before the biologically relevant lesions are formed. However, from the existing data of biological effects, it can be concluded that the efficiencies for cell killing are always smaller than those extrapolated from X-ray data on the basis of the energy deposition only. Therefore, cells which are directly hit by an HZE particle are not killed and undergo a finite risk of mutation and transformation.  相似文献   

4.
This paper reports on DNA DSB induction in human fibroblasts by iron ions of different energies, namely 5, 1 GeV/u, 414 and 115 MeV/u, in absence or presence of different shields (PMMA, Al and Pb). Measure of DNA DSB was performed by calibrated Pulsed Field Gel Electrophoresis using the fragment counting method. The RBE-LET relationships for unshielded and shielded beams were obtained both in terms of dose average LET and of track average LET. Weak dependence on these parameters was observed for DSB induction. The shielding efficiency, evaluated by the ratio between the cross sections for unshielded and shielded beams, depends not only on the shield type and thickness, but also on the beam energy. Protection is only observed at high iron ions energy, especially at 5 GeV/u, where PMMA shield gives higher protection compared to Al or Pb shields of the same thickness expressed in g/cm2.  相似文献   

5.
Although the space radiation environment consists predominantly of energetic protons, astronauts inside a spacecraft are chronically exposed to both primary particles as well as secondary particles that are generated when the primary particles penetrate the spacecraft shielding. Secondary neutrons and secondary charged particles can have an LET value that is greater than the primary protons and, therefore, produce a higher relative biological effectiveness (RBE). Using the accelerator facility at Loma Linda University, we exposed human lymphocytes in vitro to 250 MeV protons with doses ranging from 0 to 60 cGy at three different dose rates: a low dose rate of 7.5 cGy/h, an intermediate dose rate of 30 cGy/h and a high dose rate of 70 cGy/min. The effect of 15 g/cm2 aluminum shielding on the induction of chromosome aberrations was investigated for each dose rate. After exposure, lymphocytes were incubated in growth medium containing phytohemagglutinin (PHA) and chromosome spreads were collected using a chemical-induced premature chromosome condensation (PCC) technique. Aberrations were analyzed using the fluorescence in situ hybridization (FISH) technique with three different colored chromosome-painting probes. The frequency of reciprocal and complex-type chromosome exchanges were compared in shielded and unshielded samples.  相似文献   

6.
The potentially specific importance of the heavy ions of the galactic cosmic radiation for radiation protection in manned spaceflight continues to stimulate in situ, i.e., spaceflight experiments to investigate their radiobiological properties. Chromosome aberrations as an expression of a direct assault on the genome are of particular interest in view of cancerogenesis being the primary radiation risk for man in space. In such investigations the establishment of the geometrical correlation between heavy ions' trajectories and the location of radiation sensitive biological substructures is an essential task. The overall qualitative and quantitative precision achieved for the identification of particle trajectories in the order of approximately 10 micrometers as well as the contributing sources of uncertainties are discussed. We describe how this was achieved for seeds of Lactuca sativa as biological test organisms, whose location and orientation had to be derived from contact photographies displaying their outlines and those of the holder plates only. The incidence of chromosome aberrations in cells exposed during the COSMOS 1887 (Biosatellite 8) and the COSMOS 2044 (Biosatellite 9) mission was determined for seeds hit by cosmic heavy ions. In those seeds the incidence of both single and multiple chromosome aberrations was enhanced. The results of the Biosatellite 9 experiment, however, are confounded by spaceflight effects unrelated to the passage of heavy ions.  相似文献   

7.
Because activities in space necessarily involve chronic exposure to a heterogeneous charged particle radiation field it is important to assess the influence of dose-rate and the possible modulating role of heavy particle fragmentation on biological systems. Using the well-studied cataract model, mice were exposed to plateau 600 MeV/amu 56Fe ions either as acute or fractionated exposures at total doses of 5 - 504 cGy. Additional groups of mice received 20, 360 and 504 cGy behind 50 mm of polyethylene, which simulates body shielding. The reference radiation consisted of 60Co gamma radiation. The animals were examined by slit lamp biomicroscopy over their three year life spans. In accordance with our previous observations with heavy particles, the cataractogenic potential of the 600 MeV/amu 56Fe ions was greater than for low-LET radiation and increased with decreasing dose relative to gamma-rays. Fractionation of a given dose of 56Fe ions did not reduce the cataractogenicity of the radiation compared to the acute regimen. Fragmentation of the beam in the polyethylene did not alter the cataractotoxicity of the ions, either when administered singly or in fractions.  相似文献   

8.
Outside the magnetic field of the Earth, high energy heavy ions constitute a relevant part of the biologically significant dose to astronauts during the very long travels through space. The typical pattern of energy deposition in the matter by heavy ions on the microscopic scale is believed to produce spatially correlated damage in the DNA which is critical for radiobiological effects. We have investigated the influence of a lucite shielding on the initial production of very small DNA fragments in human fibroblasts irradiated with 1 GeV/u iron (Fe) ions. We also used gamma rays as reference radiation. Our results show: (1) a lower effect per incident ion when the shielding is used; (2) an higher DNA Double Strand Breaks (DSB) induction by Fe ions than by gamma rays in the size range 1-23 kbp; (3) a non-random DNA DSB induction by Fe ions.  相似文献   

9.
In Advanced Life Support (ALS) systems with bioregenerative components, plant photosynthesis would be used to produce O2 and food, while removing CO2. Much of the plant biomass would be inedible and hence must be considered in waste management. This waste could be oxidized (e.g., incinerated or aerobically digested) to resupply CO2 to the plants, but this would not be needed unless the system were highly closed with regard to food. For example, in a partially closed system where some of the food is grown and some is imported, CO2 from oxidized waste when combined with crew and microbial respiration could exceed the CO2 removal capability of the plants. Moreover, it would consume some O2 produced from photosynthesis that could have been used by the crew. For partially closed systems it would be more appropriate to store or find other uses for the inedible biomass and excess carbon, such as generating soils or growing woody plants (e.g., dwarf fruit trees). Regardless of system closure, high harvest crops (i.e., crops with a high edible to total biomass ratio) would increase food production per unit area and O2 yields for systems where waste biomass is oxidized to recycle CO2. Such interlinking effects between the plants and waste treatment strategies point out the importance of oxidizing only that amount of waste needed to optimize system performance.  相似文献   

10.
"Crickets in Space" was a Neurolab experiment by which the balance between genetic programs and the gravitational environment for the development of a gravity sensitive neuronal system was studied. The model character of crickets was justified by their external gravity receptors, identified position-sensitive interneurons (PSI) and gravity-related compensatory head response, and by the specific relation of this behavior to neuronal arousal systems activated by locomotion. These advantages allowed to study the impact of modified gravity on cellular processes in a complex organism. Eggs, 1st, 4th and 6th stage larvae of Acheta domesticus were used. Post-flight experiments revealed a low susceptibility of the behavior to micro- and hypergravity while the physiology of the PSI was significantly affected. Immunocytological investigations revealed a stage-dependent sensitivity of thoracic GABAergic motoneurons to 3 g-conditions concerning their soma sizes but not their topographical arrangement. The morphology of neuromuscular junctions was not affected by 3 g-hypergravity. Peptidergic neurons from cerebral sensorimotor centers revealed no significant modifications by microgravity (micro g). The contrary physiological and behavioral results indicate a facilitation of 1 g-readaptation originating from accessory gravity, proprioceptive and visual sense organs. Absence of anatomical modifications point to an effective time window of micro g or 3 g-expo-sure related to the period of neuronal proliferation. The analysis of basic mechanisms of how animals and man adapt to altered gravitational conditions will profit from a continuation of the project "Crickets in Space".  相似文献   

11.
Eight month old male C57BL6 mice were exposed without anesthesia to whole-body irradiation in circular holders. The mice were tested for behavioral decrements after 0.5 and 50 rads of Fe particle irradiation at 6 and 12 months post irradiation to obtain long term results. A standard maze was used and the animals were timed for completion thereof. A string test also was administered to the mice, testing their ability to grasp and move along a string to safety. The results from animals exposed to 50 rads were significantly different from [correction of fron] control results to p = < .001 in both systems of testing. The hippocampus (believed to be the location of environmental interaction in the brain) and the retina were examined for ultrastructural changes. The ultrastructural changes were similar to those we found in our Cosmos 782, 936 and in our Argon experiments. The mouse data indicate that iron particles were able to induce long term changes in the central nervous system which lead to behavioral impairment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号