共查询到10条相似文献,搜索用时 296 毫秒
1.
鸽群优化(PIO)算法已广泛用于无人机编队和控制参数优化等领域,但标准PIO算法容易陷入局部最优。提出了一种基于自适应学习策略的改进鸽群优化(ALPIO)算法。该算法引入了基于容差的搜索方向调整策略、基于自学习的候选者生成策略以及基于竞争学习的预测策略,通过增强种群的多样性,可提高算法全局最优概率,其已在8个基准函数上进行测试。仿真试验结果表明:所提算法在多峰函数优化问题中的收敛精度和收敛速度有了显著提升,并且能够更有效避免陷入局部最优解。 相似文献
2.
提出一种基于传感器的移动机器人避障路径规划算法。考虑到传感器存在视场范围限制的问题,算法仅利用当前单一视场内的有限环境信息,采用两种搜索模式,以机器人当前的运动方向、障碍物边界端点数据及目标点所在方向为依据,在当前视场中搜索合适的路径。这两种搜索模式保证了路径最终收敛到目标点。最后,通过仿真实例验证了算法的有效性。 相似文献
3.
移动机器人所处的环境通常是动态的,机器人需要及时做出响应,同时保证路径的平滑度及与障碍物间的安全距离。针对此问题,提出了一种基于障碍物代价势场的移动机器人动态避障算法。通过建立静态栅格地图及障碍物的代价势场,获得动态场景下的等势线及经过起点、终点的切线,求解最小生成树获得初始候选路径,针对路径的长度、障碍物距离及平滑度对候选路径锚点进行调整。通过引入障碍物速度对代价势场的影响,使得机器人能对移动中的障碍物做出及时的响应。为验证所提算法的有效性,在分辨率为1 200×1 000 m的栅格场景下分别对静态场景和动态场景进行仿真,结果表明:所提算法能够在保证路径具有较高的平滑度且与障碍物间保持安全距离的条件下使路径尽可能得短;同时在动态障碍物场景下依然能保持路径的平滑和避障的安全性,满足动态场景下移动机器人路径规划的要求。 相似文献
4.
针对多无人机(UAV)协同目标防御问题,提出了一种基于指数平均动量鸽群优化(EM-PIO)算法。针对三维空间中的多无人机协同目标防御系统进行建模,得到了无人机支配区域的曲面约束方程,并获得了双方无人机的最优控制输入量。采用多级罚函数法构造了优化算法的目标函数,并通过所提出的EM-PIO算法来求解最优目标点。将所提EM-PIO算法与遗传算法(GA)和粒子群优化(PSO)算法进行仿真对比实验,验证了所提EM-PIO算法更加有效解决多无人机协同目标防御问题。 相似文献
5.
6.
文章针对果蝇优化算法易陷入局部最优的问题,对果蝇算法中的味道浓度判定值进行改进,并将其用于月球探测巡视器的动态路径规划。为验证算法的有效性,将改进果蝇优化算法与粒子群优化算法的路径规划寻优特性进行了仿真对比分析,结果表明改进果蝇优化算法具有良好的实时性,并有效解决了算法易陷入局部最优的问题。考虑到月球探测巡视器在沿规划路径进行月面巡视的过程中,有可能遇到未知障碍物的情况,提出了动态环境下月球巡视器遇到未知静态障碍物的避障策略。 相似文献
7.
提出了一种基于单目相机的小型多旋翼无人机的连续避障策略。所提出的方法包括深度估计和导航决策两个模块。其中,在深度估计模块采用条件对抗网络对无人机采集得到的RGB图片进行训练预处理,在导航决策模块采用深度确定性策略梯度(DDPG)算法实现无人机的连续避障。在此基础上,对DDPG中的Actor网络进行改进,通过使用多模态网络代替原有策略网络,从而抑制无人机飞行震动,提高避障能力。最后,在Airsim仿真环境中进行测试,实验表明所提算法模型经过训练能够使无人机成功躲避障碍物并到达指定目标点,与原有算法相比避障轨迹得到明显改善。 相似文献
8.
9.
针对航天器编队重构的路径规划问题,考虑燃料消耗和碰撞概率等约束条件,以及基本鸽群算法存在的问题,提出一种基于混沌初始化和高斯扰动的自适应鸽群(CGAPIO)算法。为了得到多样性和覆盖性更好的鸽群初始值,采用Tent Map混沌模型进行鸽群初始化操作;在地图和指南针算子阶段,为提高全局搜索能力,引入了自适应的权重因子和学习因子更新个体的位置和速度;在地标算子阶段,为避免算法陷入局部最优,将高斯扰动加入到鸽群中心位置。仿真实验结果表明:CGAPIO算法与基本鸽群算法和粒子群算法相比,提高了全局搜索能力,避免了局部最优,规划得到的路径更加平滑,各航天器碰撞概率较低,编队重构消耗的总燃料至少减少了12%。 相似文献
10.
针对无人机(UAV)的航迹规划问题,提出了一种基于混沌多精英鲸鱼优化算法(CML-WOA)的航迹规划方法。首先,在已知飞行环境下,建立3D飞行空间模型和航迹代价模型。通过引入罚函数,将有约束3D航迹规划问题转化为无约束多维函数优化问题,利用CML-WOA求解模型来获得最优航迹。其次,为克服WOA易陷入局部最优的缺陷,引入立方映射混沌算子改善初始种群,增强种群多样性,并通过自适应框架融入正余弦算法(SCA),利用多精英搜索策略有效地提高了算法开发能力和探索能力。最后,使用贪婪策略保证了收敛效率。通过20个基准函数测试和航迹规划仿真实验对提出的改进WOA进行验证。结果表明:所提算法相对其他算法,寻优性能明显提升,具有较强局部最优规避能力和更高的收敛精度与收敛速度;能够稳定快速地规划出代价最少、满足约束的安全可行的飞行航迹。 相似文献