首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到4条相似文献,搜索用时 115 毫秒
1.
低纬Pc3地磁脉动的多台观测   总被引:1,自引:0,他引:1  
利用长春、北京、兰州三个低纬地区台站的地磁脉动观测资料,对低纬地区(1.21≤L≤1.43)Pc3脉动的频谱特性和偏振特性做了对比分析,并对低纬Pc3脉动的激发机制和传播过程进行了讨论。  相似文献   

2.
Pc4 signatures for the year 2013, extracted from geomagnetic north–south and east–west components of induction coil magnetometer (LEMI 30) from low latitude station Desalpar (DSP), operated by Institute of Seismological Research (ISR), India have been investigated vis-à-vis the prevalent interplanetary parameters (IMF) as well as the geomagnetic activity indices. A clear dominance of Pc4-5 (467 events) over Pc3 (17 events) is observed. Local time variation of Pc4 shows a peak in the noon sector in both X and Y components. Our investigations show that the dominant peak frequency is 10 mHz at low latitude region. Correlations with solar wind and IMF parameters illustrate highest occurrence of Pc4 for a solar wind speed of 300–400 km/s and average IMF B field of 3–6 nT. The amplitude of Pc4s at DSP shows an increase with increasing solar wind speed, plasma density, solar wind dynamic pressure and average B field which is also reflected in the trend of frequency variation of these pulsations. We report that IMF clock angle at low latitude does not have influence on Pc4 occurrence. Based on the characteristics of these events, detected in latitudinally distributed stations from low and mid-latitudes from northern and southern hemisphere, we infer that modes were compressional, which could be driven by K-H instability or solar wind dynamic pressure, as compressional modes can propagate to low latitude with little attenuation.  相似文献   

3.
We investigate the properties of interplanetary inhomogeneities generating long-lasting mid-latitude Pc1, 2 geomagnetic pulsations. The data from the Wind and IMP 8 spacecrafts, and from the Mondy and Borok midlatitude magnetic observatories are used in this study. The pulsations under investigation develop in the maximum and early recovery phase of magnetic storms. The pulsations have amplitudes from a few tens to several hundred pT andlast more than seven hours. A close association of the increase (decrease) in solar wind dynamic pressure (Psw) with the onset or enhancement (attenuation or decay) of these pulsations has been established. Contrary to high-latitude phenomena, there is a distinctive feature of the interplanetary inhomogeneities that are responsible for generation of long-lasting mid-latitude Pc1, 2. It is essential that the effect of the quasi-stationary negative Bz-component of the interplanetary magnetic field on the magnetosphere extends over 4 hours. Only then are the Psw pulses able to excite the above-mentioned type of mid-latitude geomagnetic pulsations. Model calculations show that in the cases under study the plasmapause can form in the vicinity of the magnetic observatory. This implies that the existence of an intense ring current resulting from the enhanced magnetospheric convection is necessary for the Pc1, 2 excitation. Further, the existence of the plasmapause above the observation point (as a waveguide) is necessary for long-lasting Pc1 waves to arrive at the ground.   相似文献   

4.
2017年9月8日发生了一次强磁暴,Kp指数最大值达到8.利用区域电离层格网模型(Regional Ionosphere Map,RIM)和区域ROTI(Rate of TEC Index)地图,分析了磁暴期间中国及其周边地区电离层TEC扰动特征和低纬地区电离层不规则体的产生与发展情况,同时利用不同纬度IGS(International GNSS Service)测站BJFS(39.6°N,115.9°E),JFNG(30.5°N,114.5°E)和HKWS(22.4°N,114.3°E)的GPS双频观测值,获取各测站的ROTI和DROT(Standard Deviation of Differential ROT)指数变化趋势.结果表明:此次磁暴发生期间电离层扰动先以正相扰动为主,主要发生在中低纬区域,dTEC(differential TEC)最大值达到14.9TECU,随后电离层正相扰动逐渐衰减,在低纬区域发生电离层负相扰动,dTEC最小值达到-7.2TECU;在12:30UT-13:30UT时段,中国南部低纬地区发生明显的电离层不规则体事件;相比BJFS和JFNG两个测站,位于低纬的HKWS测站的ROTI和DROT指数变化更为剧烈,这表明电离层不规则体结构存在纬度差异.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号