首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 140 毫秒
1.
空间辐射环境中高能电子诱发的介质材料深层充放电效应是威胁航天器安全的重要因素之一. 本文采用不同束流强度的电子枪电子, 研究了不同厚度的聚酰亚胺薄膜的深层充电过程; 利用Sr90放射源电子模拟GEO轨道高能电子环境, 研究了在其辐照下聚甲醛树脂和聚四氟乙烯材料的表面电位变化; 实验观测了深层放电产生的电流脉冲和电场脉冲. 提出了深层充电模型, 较好地模拟了实验测量结果, 并且分析了深层充电平衡电位和平衡时间随电子束流强度和介质电阻率的变化规律. 实验和数值模拟结果初步揭示了深层充放电效应的特征及规律, 表明深层充电现象随着电子束流强度和介质电阻率的增加而趋于明显, 介质电阻率是影响深层充电平衡电位和平衡时间的主要因素.   相似文献   

2.
太阳帆板驱动机构内带电效应试验   总被引:4,自引:0,他引:4       下载免费PDF全文
太阳帆板驱动机构(Solar Array Drive Assembly,SADA)是长寿命、大功率航天器能源系统的关键部件.在空间高能电子环境下,SADA内部会发生静电放电甚至诱发二次放电,导致航天器丧失能源.利用双束加速器建立试验平台,对SADA进行内带电效应试验.试验中高能电子束的电子能量为2MeV,束流密度为5pA·cm-2,模拟SADA工作电压为50~150V,工作电流为0.5~1.5A.试验样品充电电位在辐照5h后达到平衡,形成的电场约为5×106V·m-1.相同工作电流下的放电次数随工作电压增大而明显增加,说明工作电压形成的电场与高能电子沉积形成的电场叠加会增加SADA发生放电的风险.依据试验结果,提出SADA抗内带电设计方案:一是降低SADA介质盘的体电阻率;二是改进导电环结构体的结构设计,降低导电环间电压在介质盘上形成的电场.   相似文献   

3.
航天器介质深层充电模拟研究   总被引:1,自引:1,他引:0  
针对航天器介质深层充电问题,提出了一种基于蒙特卡罗模拟和充电动力学RIC模型的介质电荷分布及电场预估新方法,利用地面试验验证了其正确性.航天器介质平板充电过程被简化为屏蔽铝板与分层介质组成的Geant 4模型,通过统计方法计算出了实际入射束流下Teflon介质内的注入电流密度和剂量率分布曲线,利用RIC模型获得了背面接地时介质中的电荷密度和电场分布,利用脉冲电声法(PEA)对不同束流密度辐照下的Teflon内部空间电荷密度进行了测量.数值模拟和地面试验结果表明,Teflon在100 keV能量电子辐照下,电荷密度和电场随着束流密度的增加而不断增大,其电荷密度峰值位置约为0.042 mm,且背面接地时接地侧电场最大.由于Geant 4粒子输运模拟和RIC模型具有通用性,因此该方法适用于各种航天器介质材料.   相似文献   

4.
典型空间聚合物介质的抗内带电改性技术   总被引:1,自引:1,他引:0  
消除航天器介质内带电所产生脉冲放电威胁的最佳方式,除有效屏蔽外,就是研制不会产生脉冲放电的介质材料和绝缘结构件.通过对航天器用聚酰亚胺、环氧树脂和聚四氟乙烯等几种典型聚合物的改性研究发现,采用微米级无机粉料对聚合物介质材料进行改性,只要添加剂的电导率显著低于聚合物的电导率,该复合介质材料即可产生显著的非线性电阻率特性,可以实现在介质内带电程度达到放电阈值时迅速以非脉冲电导电流方式释放掉所储存的危险电荷,有可能达到消除脉冲放电的目标;当该添加剂含有微量"施主"杂质时甚至还可以提高介质材料在正常情况下的电阻率.对复合介质非线性电阻特性的产生机理进行了分析.   相似文献   

5.
现有关于介质微波部件微放电的相关研究多从谐振条件及出射电子产额方面出发分析微放电发生原因及其抑制方法,而很少分析航天器表面电位对于微放电发生的影响。文章对碰撞电子与介质表面相互作用后二次电子发射特性进行综合分析;重点研究了不同介质表面初始电位情况下,恒定能量的电子束流持续轰击介质表面时介质表面电位及电子束流碰撞能量的变化趋势;并对稳定后的电子束流碰撞能量和介质表面电位进行了理论计算,计算结果表明系统平衡状态时的表面电位受初始电子能量及第二临界能量影响有明显改变。此外,文章探究了单一能量及连续能量入射介质表面时表面带电对于二次电子发射的影响,研究表明:带有电位φ的表面会使临界能量发生偏移量-eφ的相对偏移;对于连续能量的入射电子束,介质表面带电会很大程度上改变入射电子束的能量范围,从而影响微放电发生的风险。  相似文献   

6.
针对在轨运行航天器在空间等离子体环境和空间带电粒子活动下诱发航天器表面梯度电势存在的客观现实,航天器在空间碎片的撞击下会诱发表面带电或深层电介质带电的航天器放电。为了在实验室模拟航天器表面存在电势差的真实情况,采用对航天器外表面分割的方法,在分割的表面间预留不同间距且在2靶板间加装电阻的方法创造具有梯度电势的高电势2A12铝板作为靶板。利用自行构建的梯度电势靶板的充放电测试系统、超高速相机采集系统和二级轻气炮加载系统,开展高速撞击梯度电势2A12铝靶的实验室实验。实验中,弹丸以入射角度为60°(弹道与靶板平面的夹角)、撞击速度约为3 km/s的条件撞击间距分别为2、3、4和5 mm的2A12铝高电势靶板,利用电流探针和电压探针采集放电电流和放电电压。实验结果表明:放电产生的等离子体形成了高电势与低电势靶板间的放电通道,且在梯度电势靶板间距分别为2、3 mm时诱发了一次放电,放电电流随高低电势靶板间间距的增加而减小;在梯度电势靶板间距分别为4、5 mm时诱发了二次放电,放电电流随高低电势靶板间间距的增加变化不明显。   相似文献   

7.
Kapton和F4.6是两种航天器上最常用的重要热控材料,但它们都是高绝缘的有机高分子聚合物,故在充分利用它们的优良物化性质时,不能不关心它们在空间亚暴环境下表面充电的性能。为此本文在简述了新增环境温度变化的条件后,详细讨论了这两种材料在模拟空间真空、空间亚暴时电子辐照、太阳辐照及其所处环境温度变化时,它们表面电阻率随环境变化响应规律,并由此预测其充电的状态。  相似文献   

8.
本文报道了RTV-Ⅱ黑漆和13-17白色涂层二种航天器温控材料的电导在综合空间环境条件下的实验结果。实验表明RTV-Ⅱ涂层材料的电导从1984年到1986年,几乎每年下降一个量级,因而充电状态明显改变。13-17涂层材料的电导对空间真空环境响应不明显,但对电子辐照和光辐照响应显著,尤其对光辐照存在强烈的记忆效应。预测该涂层在轨道上由光照区进入星蚀区也不会出现明显充电现象。  相似文献   

9.
<正> 一、前言当航天器在空间运行和地面贮存时,空间的粒子辐照和地面的湿热环境是影响航天器性能的两个主要因素,特别是以高分子材料为基础的合成胶粘剂,上述环境的影响往往会更加显著。为了保证航天器的胶接制件,在较长时间的地面贮存和空间运行时,不因胶粘剂的湿热老化而引起产品性能的下降,也不因空间辐照的影响而导致胶接制件的破坏。对一些常用的胶粘剂进行辐照和湿热老化试验是非常必要的。本文的目的是通过对常用胶粘剂耐辐照和耐湿热老化性能的评价,为航天器材料的选择提供一定的参考。本实验均采用加速老化的形式。  相似文献   

10.
基于Geant 4软件建立一种用于计算航天器内部充电所产生电场的方法.分析载有IDM仪器的CRRES卫星当时所处的空间电子环境,使用该方法进行内部充电模拟,并将模拟结果与IDM仪器所测得的放电脉冲数据进行对比,不仅验证了该方法的有效性,更重要的是深入认识了引起航天器内部充电的空间环境特征以及材料特性对充放电效应的影响.介质内最大电场的模拟计算结果与CRRES卫星实际观测到的放电现象吻合;在材料的各项参数中,与辐射感应电导率有关的kp系数对稳态电场有很大影响,为了定量研究内部充电效应,需要在实验室精确地测定kp系数;材料的暗电导率、密度以及材料的分子构成等也与内部充电效应有关,对这些参数细致地研究有助于对内部充电效应的认识.   相似文献   

11.
开发了一种由偏压基值产生电路和偏压脉冲产生电路组成的新型脉冲电子束焊接偏压电源,该偏压电源装置能够实现直流偏压和脉冲偏压自由切换,即在同一套装置上既能够实现常规连续束流电子束焊接,又能够实现脉冲电子束流焊接.偏压基值产生电路控制偏压脉冲基值,偏压脉冲产生电路分别控制偏压脉冲峰值、偏压脉冲频率和偏压脉冲占空比.偏压电源的脉冲频率、占空比、脉冲基值和脉冲峰值均可调节,对应实现脉冲束流的脉冲频率、占空比和脉冲峰值调节.试验证明在平均束流焊透相同材料时,相比连续束流电子束焊接,脉冲电子束焊接热输入减少,焊缝宽度有减少趋势.  相似文献   

12.
太阳帆板驱动机构的表面充放电效应研究   总被引:2,自引:2,他引:2       下载免费PDF全文
空间等离子体环境效应导致的卫星表面充放电是造成卫星在轨工作异常及故障的重要原因之一. 太阳帆板驱动机构(Solar Array Drive Assembly,SADA)是长寿命、大功率卫星电传输环节的关键部件,易成为充放电效应的对象,可使卫星丧失能源,导致整星失效. 为验证空间等离子体环境导致的表面充放电对SADA特别是其功率传输可靠性和安全性的影响,利用等离子体环境模拟试验装置,模拟地球同步轨道(Geostationary Orbit,GEO)等离子体环境,针对SADA进行试验研究. 结果表明,使用两种不同绝缘材料的SADA在空间等离子体模拟环境下表现没有明显区别,表面充放电未对设计合理的SADA正常工作造成明显影响. 研究结果对未来GEO轨道SADA等空间机构的可靠性和安全性设计具有一定指导意义.   相似文献   

13.
高能(350KeV)-中能(18—30KeV可调)-低能(4—5KeV可调)电子联合辐照聚酯薄膜和特氟隆薄膜,得到与中能电子辐照、高-中能电子联合辐照以及中-低能电子联合辐照不同的结果。实验结果表明,高能电子能诱发电介质薄膜充放电。特氟隆薄膜的三能电子联合辐照实验结果与Coakley和Treadaway的1-100keVdN/dE∝E~(-2)谱电子辐照实验结果以及NASCAP计算机模拟结果符合。得出结论,三能电子联合辐照可较为完善地模拟静止卫星电介质的充放电效应。论证了选用三种能量电子的充分性和必要性。推断出,如果在星食期遇到象1979年4月24日磁层亚暴事件,则静止卫星表面某些电介质局部电位有可能超过SCATHA卫星近期数据给出的和NASCAP计算的-2—-4KV,而且会出现大的放电。  相似文献   

14.
研制出一台150 kV/30 kW高压脉冲电子束焊机,介绍了控制脉冲束流产生的偏压脉冲电源拓扑电路结构及脉冲束流频率、占空比、束流基值、束流峰值的调节控制技术.在0~1 kHz频率范围内,该电源可输出最大幅值200 mA的脉冲电子束束流,且工艺参数调节方便.分别采用脉冲束流与连续束流电子束工艺焊接了1Cr18Ni9Ti奥氏体不锈钢,对不同工艺的焊缝形貌进行了对比分析.与连续束流电子束焊接工艺相比,采用脉冲电子束焊接工艺的焊缝熔深增加,深宽比增大;对于脉冲电子束焊接工艺,占空比给定时,随着束流频率增加,焊接缺陷减少.试验结果表明:脉冲束流频率、占空比是影响焊缝成形的关键工艺参数;脉冲调制方式控制偏压是获得高压脉冲电子束的理想控制技术之一.   相似文献   

15.
A two-dimensional electromagnetic simulation model is used to investigate the production of whistler waves in connection with electron beam experiments in space. The spectrum is observed to peak near 0.7 ωe, and the conversion efficiency of beam energy to whistler waves is about 5 × 10−5. The whistlers can be trapped in a density trough extending out from the spacecraft and experience ducted propagation.  相似文献   

16.
为了实现对空间高能电子通量的估计及航天器深层充放电的风险评估,基于深层充电和空间电子环境的关联性,利用人工神经网络(ANN)建立了一种由深层充电反演空间高能电子环境的模型。以深层充电探测电流密度及电子能量作为模型输入,电子通量作为模型输出,使用AE9模型对神经网络进行训练,将神经网络的MSE降低到了0.04122,并使用Giove A卫星的深层充电探测数据及GOES卫星的电子通量探测数据验证了模型反演电子环境的准确性。同时对由探测电流计算航天器典型介质材料最大内电场的神经网络模型进行了研究,以实现对航天器内充电风险实时评估。  相似文献   

17.
低轨道高度上能量电子通量变化与地磁扰动程度密切相关.利用我国资源2号(ZY-2)03星空间环境监测分系统在轨工作期间所获得的能量电子探测数据,以及美国NOAA-15,NOAA-16,NOAA-17三颗卫星中等能量电子探测器自1998年以来积累的太阳同步轨道中等能量电子探测数据,结合地磁活动观测数据,对低轨道高度上中等能量电子对地磁扰动的响应特性进行了统计分析.结果表明,该区域的中等能量电子通量在磁暴、磁层亚暴期间有显著增强,增幅大小与地磁活动程度呈正相关关系,强磁暴期间增幅可达一个数量级左右,在响应时间上存在电子通量变化滞后于磁扰的时间特性.   相似文献   

18.
空间等离子体环境诱发的表面充电效应会对航天器运行产生干扰,严重时将导致太阳电池等部件失效。通过神经网络反演方法,以GEO环境中介质表面充电电位曲线作为输入,在双峰麦克斯韦分布假设下,可以逆向得到高能峰的等离子体参数。分析了GEO等离子体环境参数对表面充电电位曲线的影响,表明高能峰在充电过程中起决定性作用;其次通过MATLAB搭建BP神经网络,采用COMSOL计算得到多组充电曲线进行网络训练和反演计算,得到等离子体密度反演的平均相对误差为0.42%,温度反演的平均相对误差为0.03%,整体误差在0.1%~5.6%。结果表明,采用神经网络对等离子体环境进行反演具有可行性,该方法可以作为空间等离子体环境探测结果的对比参考和航天器非探测点表面电位计算的输入条件。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号