首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
The effect of elevated temperatures of 35 and 45 degrees C (at the intensities of photosynthetically active radiation 322, 690 and 1104 micromoles m-2 s-1) on the photosynthesis, respiration, and qualitative and quantitative composition of the volatiles emitted by wheat (Triticum aestuvi L., cultivar 232) crops was investigated in growth chambers. Identification and quantification of more than 20 volatile compounds (terpenoids--alpha-pinene, delta 3 carene, limonene, benzene, alpha- and trans-caryophyllene, alpha- and gamma-terpinene, their derivatives, aromatic hydrocarbons, etc.) were conducted by gas chromatograph/mass spectrometry. Under light intensity of 1104 micromoles m-2 s-1 heat resistance of photosynthesis and respiration increased at 35 degrees C and decreased at 45 degrees C. The action of elevated temperatures brought about variations in the rate and direction of the synthesis of volatile metabolites. The emission of volatile compounds was the greatest under a reduced irradiation of 322 micromoles m-2 s-1 and the smallest under 1104 micromoles m-2 s-1 at 35 degrees C. During the repair period, the contents and proportions of volatile compounds were different from their initial values, too. The degree of disruption and the following recovery of the functional state depended on the light intensity during the exposure to elevated temperatures. The investigation of the atmosphere of the growth chamber without plants has revealed the substances that were definitely technogenic in origin: tetramethylurea, dimethylsulfide, dibutylsulfide, dibutylphthalate, and a number of components of furan and silane nature.  相似文献   

2.
To increase the degree of closure of biological life support systems of a new generation, we used vermicomposting to involve inedible phytomass in the intra-system mass exchange. The resulting product was a soil-like substrate, which was quite suitable for growing plants (Manukovsky et al. 1996, 1997). However, the soil like substrate can be regarded as a candidate for inclusion in a system only after a comprehensive examination of its physical, chemical, and other characteristics. An important criterion is the ability of the soil-like substrate to supply the necessary mineral elements to the photosynthesizing component under the chosen cultivation conditions. Thus, the purpose of this work was to study the feasibility of enhancing the production activity of wheat and radish crops by varying the intensity of photosynthetically active radiation, without decreasing the harvest index. The increase of light intensity from 920 to 1150 micromoles m-2 s-1 decreased the intensity of apparent photosynthesis of the wheat crops and slightly increased the apparent photosynthesis of the radish crops The maximum total and grain productivity (kg/m2) of the wheat crops was attained at the irradiance of 920 micromoles m-2 s-1. Light intensity of 1150 micromoles m-2 s-1 decreased the productivity of wheat plants and had no significant effect on the productivity of the radish crops (kg/m2) as compared to 920 micromoles m-2 s-1. The qualitative and quantitative composition of microflora of the watering solution and substrate was determined by the condition of plants, developmental phase and light intensity. By the end of wheat growth under 1150 micromoles m-2 s-1 the numbers of bacteria of the coliform family and phytopathogenic bacteria in the watering solution and substrate were an order of magnitude larger than under other illumination conditions. The obtained data suggest that the cultivation of plants in a life support system on soil-like substrate from composts has a number of advantages over the cultivation on neutral substrates, which require continual replenishment of the plant nutrient solution from the system's store to complement the macro- and micro-elements. Yet, a number of problems arise, including those related to the controlling of the production activity of the plants by the intensity of photosynthetically active radiation. It is essential to understand why the intensity of production processes is limited at higher irradiation levels and to overcome the factors responsible for this, so that the soil-like substrate could have an even better chance in the competition for the best plant cultivation technology to be used in biological life support systems.  相似文献   

3.
Our experiments examined enhancing tolerance of the photosynthesizing component to possible deviations in thermal or illumination conditions inside a bioregenerative life support system (BLSS). In the event of one parameter getting beyond its optimum, the values of other parameters may ensure minimal damage to the plant component during the period of environmental stress. With wheat plants (one of key elements of the plant component) as an example the work considers whether it is possible to enhance thermal tolerance by varying light intensity. Increase of air temperature to 35 degrees C or 45 degrees C with light intensity of 60 W/m2 PAR has been shown to substantially inhibit the photosynthesis processes; at 150 W/m2 PAR photosynthesis decreases from 50% to 100%, respectively; when light intensity is increased to 240 W/m2 PAR photosynthesis increased more than 70% at 35 degrees C and decreased at 45 degrees C by only 20%. Thus, light intensity can be increased to avoid or decrease the inhibiting effect of high temperatures. On the other hand, tolerance of wheat plants to prolonged absence of light can be substantially enhanced by decreasing during this period air temperature to temperatures close to 0 degrees C.  相似文献   

4.
LED光谱对模拟空间培养箱中植物生长发育的影响   总被引:1,自引:0,他引:1  
通过研究在空间植物培养箱中利用LED作为光源对植物生长发育的作用, 并以荧光灯作为对照, 评估LED光源在空间植物培养中的优缺点, 可为中国即将在空间实验室天宫二 号和空间站中开展的高等植物生长实验提供参考. 利用不同比例的红光与白光LED组合光源, 研究光谱组成(红蓝光比例)、光照强度、光周期和气体流通等条件对于模拟空间 植物培养箱中拟南芥和水稻生长发育的影响. 结果表明, 与荧光灯相比, 红蓝光比例高的LED会导致拟南芥提早开花和水稻叶片的早衰. 红蓝光峰值比在3.9左右时, 拟南芥 和水稻生长最为有利; 红蓝光峰值比超过16则明显抑制拟南芥和水稻的生长, 导致叶片早衰. 另外, 在密闭培养箱中, 光强小于150μmol·m-2·s-1时, 增加光照强度可以部分抵消气体流通不足导致拟南芥植物生长的抑制, 而光照强度大 于150μmol·m-2·s-1时, 光强越大拟南芥的生长发育受到抑制越严重. 水稻对密闭培养环境中高光强的耐受性明显好于拟南芥. 因此, 在设计空间植物培养箱的LED光照系统时, 红蓝光的比例选择是关键, 此外还需综合考虑空间微重力条件下气体对流变化影响植物对光的反应.   相似文献   

5.
We are planning a short-term experiment with Superdwarf wheat on the U.S. Space Shuttle and a seed-to-seed experiment on the Russian Space Station Mir. The goals of both experiments are to observe effects of microgravity on developmental steps in the life cycle and to measure photosynthesis, respiration, and transpiration by monitoring gas exchange. This requires somewhat different hardware development for the two experiments. Ground-based research aims to understand plant responses to the environments in the space growth chambers that we will use (after some modification): the Plant Growth Unit (PGU) on the shuttle and units called Svet, Svetoblock 2, or Oasis on Mir. Low irradiance levels (100 to 250 micromoles m-2 s-1 at best) pose a particular problem. Water and nutrient supply are also potentially limiting factors, especially in the long-term experiment. Our ground-based studies emphasize responses to low light levels (50 to 400 micromoles m-2 s-1); results show that all developmental steps are delayed by low light compared with plants at 400 micromoles m-2 s-1. We are also testing various rooting substrates for the shuttle experiment. A 1:1:1 mixture of peat:perlite:vermiculite appears to be the best choice.  相似文献   

6.
The productivity of higher plants is determined by the incident photosynthetic photon flux (PPF) and the efficiency of the following four physiological processes: absorption of PPF by photosynthetic tissue, carbon fixation (photosynthesis), carbon use (respiration), and carbon partitioning (harvest index). These constituent processes are analyzed to determine theoretical and potentially achievable productivity. The effects of optimal environmental and cultural factors on each of these four factors is also analyzed. Results indicate that an increase in the percentage of absorbed photons is responsible for most of the improvement in wheat yields in an optimal controlled environment. Several trials confirm that there is an almost linear increase in wheat yields with increasing PPF. An integrated PPF of 150 mol m-2 d-1 (2.5 times summer sunlight) has produced 60 g m-2 d-1 of grain. Apparently, yield would continue to increase with even higher PPF's. Energy efficiency increased with PPF to about 600 micromoles m-2 s-1, then slowly decreased. We are now seeking to improve efficiency at intermediate PPF levels (1000 micromoles m-2 s-1) before further exploring potential productivity. At intermediate and equal integrated daily PPF levels, photoperiod had little effect on yield per day or energy efficiency. Decreasing temperature from 23 degrees to 17 degrees increased yield per day by 20% but increased the life cycle from 62 to 89 days. We hope to achieve both high productivity and energy efficiency.  相似文献   

7.
The photosynthesis and productivity of Lemna gibba were studied with a view to its use in Controlled Ecological Life Support Systems (CELSS). Photosynthesis of L. gibba floating on the nutrient solution could be driven by light coming from either above or below. Light from below was about 75% as effective as from above when the stand was sparse, but much less so with dense stands. High rates of photosynthesis (ca. 800 nanomoles CO2 g dry weight (DW)-1 s-1) were measured at 750 micromoles m-2 s-1 PPF and 1500 micromoles mol-1 CO2. This was attained at densities up to 660 g fresh weight (FW) m-2 with young cultures. After a few days growth under these conditions, and at higher densities, the rate of photosynthesis dropped to less than 25% of the initial value. This drop was only partly alleviated by thinning the stand or by introducing a short dark period at high temperature (26 degrees C). Despite the drop in the rate of photosynthesis, maximum yields were obtained in batch cultures grown under continuous light, constant temperature and high [CO2]. Plant protein content was less than reported for field grown Lemna. When the plants were harvested daily, maintaining a stand density of 600 g FW m-2, yields of 18 g DW m-2 d-1 were obtained. The total dry weight of L. gibba included 40% soluble material (sugars and amino acids), 15% protein, 5% starch, 5% ash and 35% cellulose and other polymers. We conclude that a CELSS system could be designed around stacked, alternate layers of transparent Lemna trays and lamps. This would allow for 7 tiers per meter height. Based on present data from single layers, the yield of such a system is calculated to be 135 g DW m-3 d-1 of a 100% edible, protein-rich food.  相似文献   

8.
Laboratory Biosphere is a 40-m3 closed life system equipped with 12,000 W of high pressure sodium lamps over planting beds with 5.37 m2 of soil. Atmospheric composition changes due to photosynthetic fixation of carbon dioxide and corresponding production of oxygen or the reverse, respiration, are observed in short timeframes, e.g., hourly. To focus on inherent characteristics of the crop as distinct from its area or the volume of the chamber, we report fixation and respiration rates in mmol h-1 m-2 of planted area. An 85-day crop of USU Apogee wheat under a 16-h lighted/8-h dark regime peaked in fixation rate at about 100 mmol h-1 m-2 approximately 24 days after planting. Light intensity was about 840 micromoles m-2 s-1. Dark respiration peaked at about 31 mmol h-1 m-2 at the same time. Thereafter, both fixation and respiration declined toward zero as harvest time approached. A residual soil respiration rate of about 1.9 mmol h-1 m-2 was observed in the dark closed chamber for 100 days after the harvest. A 126-day crop of Tuskegee TU-82-155 sweet potato behaved quite differently. Under a 680 micromoles m-2 s-1, 18-h lighted/6-h dark regime, fixation during lighted hours rose to a plateau ranging from about 27 to 48 mmol h-1 m-2 after 42 days and dark respiration settled into a range of 12-23 mmol h-1 m-2. These rates continued unabated until the harvest at 126 days, suggesting that tuber biomass production might have continued at about the same rate for some time beyond the harvest time that was exercised in this experiment. In both experiments CO2 levels were allowed to range widely from a few hundred to about 3000 ppm, which permitted observation of fixation rates both at varying CO2 concentrations and at each number of days after planting. This enables plotting the fixation rate as a function of both variables. Understanding the atmospheric dynamics of individual crops will be essential for design and atmospheric management of more complex CELSS which integrate the simultaneous growth of several crops as in a sustainable remote life support system.  相似文献   

9.
Plants intended to be included in the photosynthesizing compartment of the bioregenerative life support system (BLSS) need to be studied in terms of both their production parameters under optimal conditions and their tolerance to stress factors that might be caused by emergency situations. The purpose of this study was to investigate tolerance of chufa (Cyperus esculentus L.) plants to the super-optimal air temperature of 45 ± 1 °C as dependent upon PAR (photosynthetically active radiation) intensity and the duration of the exposure to the stress factor. Chufa plants were grown hydroponically, on expanded clay, under artificial light. The nutrient solution was Knop’s mineral medium. Until the plants were 30 days old, they had been grown at 690 μmol m−2 s−1 PAR and air temperature 25 °C. Thirty-day-old plants were exposed to the temperature 45 °C for 6 h, 20 h, and 44 h at PAR intensities 690 μmol m−2 s−1 and 1150 μmol m−2 s−1. The exposure to the damaging air temperature for 44 h at 690 μmol m−2 s−1 PAR caused irreversible damage to PSA, resulting in leaf mortality. In chufa plants exposed to heat shock treatment at 690 μmol m−2 s−1 PAR for 6 h and 20 h, respiration exceeded photosynthesis, and CO2 release in the light was recorded. Functional activity of photosynthetic apparatus, estimated from parameters of pulse-modulated chlorophyll fluorescence in Photosystem 2 (PS 2), decreased 40% to 50%. After the exposure to the stress factor was finished, functional activity of PSA recovered its initial values, and apparent photosynthesis (Papparent) rate after a 20-h exposure to the stress factor was 2.6 times lower than before the elevation of the temperature. During the first hours of plant exposure to the temperature 45 °C at 1150 μmol m−2 s−1 PAR, respiration rate was higher than photosynthesis rate, but after 3–4 h of the exposure, photosynthetic processes exceeded oxidative ones and CO2 absorption in the light was recorded. At the end of the 6-h exposure, Papparent rate was close to that recorded prior to the exposure, and no significant changes were observed in the functional activity of PSA. At the end of the 20-h exposure, Papparent rate was close to its initial value, but certain parameters of the functional activity of PSA decreased 25% vs. their initial values. During the repair period, the parameters of external gas exchange recovered their initial values, and parameters of pulse-modulated chlorophyll fluorescence were 20–30% higher than their initial values. Thus, exposure of chufa plants to the damaging temperature of the air for 20 h did not cause any irreversible damage to the photosynthetic apparatus of plants at either 690 μmol m−2 s−1 or 1150 μmol m−2 s−1 PAR, and higher PAR intensity during the heat shock treatment enhanced heat tolerance of the plants.  相似文献   

10.
To obtain basic data on adequate air circulation to enhance plant growth in a closed plant culture system in a controlled ecological life support system (CELSS), an investigation was made of the effects of the air current speed ranging from 0.01 to 1.0 m s-1 on photosynthesis and transpiration in sweetpotato leaves and photosynthesis in tomato seedlings canopies. The gas exchange rates in leaves and canopies were determined by using a chamber method with an infrared gas analyzer. The net photosynthetic rate and the transpiration rate increased significantly as the air current speeds increased from 0.01 to 0.2 m s-1. The transpiration rate increased gradually at air current speeds ranging from 0.2 to 1.0 m s-1 while the net photosynthetic rate was almost constant at air current speeds ranging from 0.5 to 1.0 m s-1. The increase in the net photosynthetic and transpiration rates were strongly dependent on decreased boundary-layer resistances against gas diffusion. The net photosynthetic rate of the plant canopy was doubled by an increased air current speed from 0.1 to 1.0 m s-1 above the plant canopy. The results demonstrate the importance of air movement around plants for enhancing the gas exchange in the leaf, especially in plant canopies in the CELSS.  相似文献   

11.
To obtain basic data for adequate air circulation for promoting plant growth in closed plant production modules in bioregenerative life support systems in space, effects of air velocities ranging from 0.1 to 0.8 m s-1 on photosynthesis in tomato seedlings canopies were investigated under atmospheric CO2 concentrations of 0.4 and 0.8 mmol mol-1. The canopy of tomato seedlings on a plug tray (0.4 x 0.4 m2) was set in a wind-tunnel-type chamber (0.6 x 0.4 x 0.3 m3) installed in a semi-closed-type assimilation chamber (0.9 x 0.5 x 0.4 m3). The net photosynthetic rate in the plant canopy was determined with the differences in CO2 concentrations between the inlet and outlet of the assimilation chamber multiplied by the volumetric air exchange rate of the chamber. Photosynthetic photon flux (PPF) on the plant canopy was kept at 0.25 mmol m-2 s-1, air temperature at 23 degrees C and relative humidity at 55%. The leaf area indices (LAIs) of the plant canopies were 0.6-2.5 and plant heights were 0.05-0.2 m. The net photosynthetic rate of the plant canopy increased with increasing air velocities inside plant canopies and saturated at 0.2 m s-1. The net photosynthetic rate at the air velocity of 0.4 m s-1 was 1.3 times that at 0.1 m s-1 under CO2 concentrations of 0.4 and 0.8 mmol mol-1. The net photosynthetic rate under CO2 concentrations of 0.8 mmol mol-1 was 1.2 times that under 0.4 mmol mol-1 at the air velocity ranging from 0.1 to 0.8 m s-1. The results confirmed the importance of controlling air movement for enhancing the canopy photosynthesis under an elevated CO2 level as well as under a normal CO2 level in the closed plant production modules.  相似文献   

12.
To clarify the effects of gravity on heat/gas exchange between plant leaves and the ambient air, the leaf temperatures and net photosynthetic rates of plant leaves were evaluated at 0.01, 1.0, 1.5 and 2.0 G of 20 seconds each during a parabolic airplane flight. Thermal images of leaves were captured using infrared thermography at an air temperature of 26 degrees C, a relative humidity of 15% and an irradiance of 260 W m-2. The net photosynthetic rates were determined by using a chamber method with an infrared gas analyzer at an air temperature of 20 degrees C, a relative humidity of 50% and a photosynthetic photon flux of 0.5 mmol m-2 s-1. The mean leaf temperature increased by 1 degree C and the net photosynthetic rate decreased by 13% with decreasing gravity levels from 1.0 to 0.01 G. The leaf temperature decreased by 0.5 degree C and the net photosynthetic rate increased by 7% with increasing gravity levels from 1.0 to 2.0 G. Heat/gas exchanges between leaves and the ambient air were more retarded at lower gravity levels. A restricted free air convection under microgravity conditions in space would limit plant growth by retarding heat and gas exchanges between leaves and the ambient air.  相似文献   

13.
Light emitting diodes (LEDs) are a promising irradiation source for plant growth in space. Improved semiconductor technology has yielded LED devices fabricated with gallium aluminum arsenide (GaAlAs) chips which have a high efficiency for converting electrical energy to photosynthetically active radiation. Specific GaAlAs LEDs are available that emit radiation with a peak wavelength near the spectral peak of maximum quantum action for photosynthesis. The electrical conversion efficiency of installed systems (micromole s-1 of photosynthetic photons per watt) of high output LEDs can be within 10% of that for high pressure sodium lamps. Output of individual LEDs were found to vary by as much as 55% from the average of the lot. LED ratings, in mcd (luminous intensity per solid angle), were found to be proportional to total photon output only for devices with the same dispersion angle and spectral peak. Increasing current through the LED increased output but also increased temperature with a consequent decrease in electrical conversion efficiency. A photosynthetic photon flux as high as 900 micromoles m-2 s-1 has been produced on surfaces using arrays with LEDs mounted 7.6 mm apart, operating as a current of 50 mA device-1 and at an installed density of approximately 17,200 lamps m-2 of irradiated area. Advantages of LEDs over other electric light sources for use in space systems include long life, minimal mass and volume and being a solid state device.  相似文献   

14.
An initial experiment in the Laboratory Biosphere facility, Santa Fe, New Mexico, was conducted May-August 2002 using a soil-based system with light levels (at 12 h per day) of 58-mol m-2 d-1. The crop tested was soybean, cultivar Hoyt, which produced an aboveground biomass of 2510 grams. Dynamics of a number of trace gases showed that methane, nitrous oxide, carbon monoxide, and hydrogen gas had initial increases that were substantially reduced in concentration by the end of the experiment. Methane was reduced from 209 ppm to 11 ppm, and nitrous oxide from 5 ppm to 1.4 ppm in the last 40 days of the closure experiment. Ethylene was at elevated levels compared to ambient during the flowering/fruiting phase of the crop. Soil respiration from the 5.37 m2 (1.46 m3) soil component was estimated at 23.4 ppm h-1 or 1.28 g CO2 h-1 or 5.7 g CO2 m-2 d-1. Phytorespiration peaked near the time of fruiting at about 160 ppm h-1. At the height of plant growth, photosynthesis CO2 draw down was as high as 3950 ppm d-1, and averaged 265 ppm h-1 (whole day averages) during lighted hours with a range of 156-390 ppm h-1. During this period, the chamber required injections of CO2 to continue plant growth. Oxygen levels rose along with the injections of carbon dioxide. Upon several occasions, CO2 was allowed to be drawn down to severely limiting levels, bottoming at around 150 ppm. A strong positive correlation (about 0.05 ppm h-1 ppm-1 with r2 about 0.9 for the range 1000-5000 ppm) was observed between atmospheric CO2 concentration and the rate of fixation up to concentrations of around 8800 ppm CO2.  相似文献   

15.
Growth of plants in a Controlled Ecological Life Support System (CELSS) may involve the use of hypobaric pressures enabling lower mass requirements for atmospheres and possible enhancement of crop productivity. A controlled environment plant growth chamber with hypobaric capability designed and built at Ames Research Center was used to determine if reduced pressures influence the rates of photosynthesis (Ps) and dark respiration (DR) of hydroponically grown lettuce plants. The chamber, referred to as a plant volatiles chamber (PVC), has a growing area of about 0.2 m2, a total gas volume of about 0.7 m3, and a leak rate at 50 kPa of <0.1%/day. When the pressure in the chamber was reduced from ambient to 51 kPa, the rate of net Ps increased by 25% and the rate of DR decreased by 40%. The rate of Ps increased linearly with decreasing pressure. There was a greater effect of reduced pressure at 41 Pa CO2 than at 81 Pa CO2. This is consistent with reports showing greater inhibition of photorespiration (Pr) in reduced O2 at low CO2 concentrations. When the partial pressure of O2 was held constant but the total pressure was varied between 51 and 101 kPa, the rate of CO2 uptake was nearly constant, suggesting that low pressure enhancement of Ps may be mainly attributable to lowered partial pressure of O2 and the accompanying reduction in Pr. The effects of lowered partial pressure of O2 on Ps and DR could result in substantial increases in the rates of biomass production, enabling rapid throughput of crops or allowing flexibility in the use of mass and energy resources for a CELSS.  相似文献   

16.
Growth of plants in a Controlled Ecological Life Support System (CELSS) may involve the use of hypobaric pressures enabling lower mass requirements for atmospheres and possible enhancement of crop productivity. A controlled environment plant growth chamber with hypobaric capability designed and built at Ames Research Center was used to determine if reduced pressures influence the rates of photosynthesis (Ps) and dark respiration (DR) of hydroponically grown lettuce plants. The chamber, referred to as a plant volatiles chamber (PVC), has a growing area of about 0.2 m2, a total gas volume of about 0.7 m3, and a leak rate at 50 kPa of <0.1%/day. When the pressure in the chamber was reduced from ambient to 51 kPa, the rate of net Ps increased by 25% and the rate of DR decreased by 40%. The rate of Ps increased linearly with decreasing pressure. There was a greater effect of reduced pressure at 41 Pa CO2 than at 81 Pa CO2. This is consistent with reports showing greater inhibition of photorespiration (Pr) in reduced O2 at low CO2 concentrations. When the partial pressure of O2 was held constant but the total pressure was varied between 51 and 101 kPa, the rate of CO2 uptake was nearly constant, suggesting that low pressure enhancement of Ps may be mainly attributable to lowered partial pressure of O2 and the accompanying reduction in Pr. The effects of lowered partial pressure of O2 on Ps and DR could result in substantial increases in the rates of biomass production, enabling rapid throughput of crops or allowing flexibility in the use of mass and energy resources for a CELSS.  相似文献   

17.
Two crop growth experiments in the soil-based closed ecological facility, Laboratory Biosphere, were conducted from 2003 to 2004 with candidate space life support crops. Apogee wheat (Utah State University variety) was grown, planted at two densities, 400 and 800 seeds m-2. The lighting regime for the wheat crop was 16 h of light-8 h dark at a total light intensity of around 840 micromoles m-2 s-1 and 48.4 mol m-2 d-1 over 84 days. Average biomass was 1395 g m-2, 16.0 g m-2 d-1 and average seed production was 689 g m-2 and 7.9 g m-2 d-1. The less densely planted side was more productive than the denser planting, with 1634 g m-2 and 18.8 g m-2 d-1 of biomass vs. 1156 g m-2 and 13.3 g m-2 d-1; and a seed harvest of 812.3 g m-2 and 9.3 g m-2 d-1 vs. 566.5 g m-2 and 6.5 g m-2 d-1. Harvest index was 0.49 for the wheat crop. The experiment with sweet potato used TU-82-155 a compact variety developed at Tuskegee University. Light during the sweet potato experiment, on a 18 h on/6 h dark cycle, totaled 5568 total moles of light per square meter in 126 days for the sweet potatoes, or an average of 44.2 mol m-2 d-1. Temperature regime was 28 +/- 3 degrees C day/22 +/- 4 degrees C night. Sweet potato tuber yield was 39.7 kg wet weight, or an average of 7.4 kg m-2, and 7.7 kg dry weight of tubers since dry weight was about 18.6% wet weight. Average per day production was 58.7 g m-2 d-1 wet weight and 11.3 g m-2 d-1. For the wheat, average light efficiency was 0.34 g biomass per mole, and 0.17 g seed per mole. The best area of wheat had an efficiency of light utilization of 0.51 g biomass per mole and 0.22 g seed per mole. For the sweet potato crop, light efficiency per tuber wet weight was 1.33 g mol-1 and 0.34 g dry weight of tuber per mole of light. The best area of tuber production had 1.77 g mol-1 wet weight and 0.34 g mol-1 of light dry weight. The Laboratory Biosphere experiment's light efficiency was somewhat higher than the USU field results but somewhat below greenhouse trials at comparable light levels, and the best portion of the crop at 0.22 g mol-1 was in-between those values. Sweet potato production was overall close to 50% higher than trials using hydroponic methods with TU-82-155 at NASA JSC. Compared to projected yields for the Mars on Earth life support system, these wheat yields were about 15% higher, and the sweet potato yields averaged over 80% higher.  相似文献   

18.
Moss protonemata are among the few cell types known that both sense and respond to gravity and light. Apical cells of Ceratodon protonemata grow by oriented tip growth which is negatively gravitropic in the dark or positively phototropic in unilateral red light. Phototropism is phytochrome-mediated. To determine whether any gravitropism persists during irradiation, cultures were turned at various angles with respect to gravity and illuminated so that the light and gravity vectors acted either in the same or in different directions. Red light for 24h (> or = l40nmol m-2 s-1) caused the protonemata to be oriented directly towards the light. Similarly, protonemata grew directly towards the light regardless of light position with respect to gravity indicating that all growth is oriented strictly by phototropism, not gravitropism. At light intensities < or = l00nmol m-2 s-1, no phototropism occurs and the mean protonemal tip angle remains above the horizontal, which is the criterion for negative gravitropism. But those protonemata are not as uniformly upright as they would be in the dark indicating that low intensity red light permits gravitropism but also modulates the response. Protonemata of the aphototropic mutant ptr1 that lacks a functional Pfr chromophore, exhibit gravitropism regardless of red light intensity. This indicates that red light acts via Pfr to modulate gravitropism at low intensities and to suppress gravitropism at intensities < or = 140nmol m-2 s-1.  相似文献   

19.
Two sealed chambers were constructed, each measuring approximately 4.5 m x 3 m x 2.5 m (LxWxH). Heat exchangers and air handling components were integrated within the sealed environment. Construction materials were chosen to minimize off-gassing and oxidation. Acceptable materials included stainless steel, Teflon (TM), glass and Heresite (TM) or baked enamel coated metal parts. The glass-topped chambers have externally mounted microwave powered light sources providing minimum PAR at canopy level of 1000 micrometers m-2 s-1. Major gases (CO2, O2) were monitored. Other environmental variables relevant to plant production (humidity, temperature, nutrient solution) were monitored and controlled continuously. Typical environment control capability and system specifications are presented. The facility is described as a venue ideally suited to address specific research objectives in plant canopy light interception, such as the roles of novel microwave powered overhead and inner-canopy light sources for dense plant canopies. In addition, control of recycled hydroponic nutrient solutions and analysis of trace atmospheric hydrocarbons in the context of sealed environment life support can be concurrently monitored.  相似文献   

20.
Separate controlled environment studies were conducted to determine the interaction of CO2 with irradiance and interaction of CO2 with temperature on growth of three potato cultivars. In the first study, an elevated CO2 concentration of 1000 micromoles mol-1 and an ambient CO2 of 350 micromoles mol-1 were maintained at the photosynthetic photon fluxes (PPF) of 17 and 34 mol m-2 d-1 with 12 h photoperiod, and at the PPF of 34 and 68 mol m-2 d-1 with 24 h photoperiod (400 and 800 micromoles m-2 s-1 PPF at each photoperiod). Tuber and total dry weights of 90-day old potatoes were significantly increased with CO2 enrichment, but the CO2 stimulation was less with higher PPF and longer photoperiod. Shoot dry weight was affected more by photoperiod than by PPF and CO2 concentrations. The elevated CO2 concentration increased leaf CO2 assimilation rates and decreased stomatal conductance with 12 h photoperiod, but had only a marginal effect with 24 h photoperiod. In the second study, four CO2 concentrations of 500, 1000, 1500 and 2000 micromoles mol-1 were combined with two air temperature regimes of 16 and 20 degrees C under a 12 h photoperiod. At harvest, 35 days after transplanting, tuber and total dry weights of potatoes reached a maximum with 1000 micromoles mol-1 CO2 at 16 degrees C, but continued to increase up to 2000 micromoles mol-1 CO2 at 20 degrees C. Plant growth was greater at 20 degrees C than at 16 degrees C under all CO2 concentrations. At 16 degrees C specific leaf weight increased substantially with increasing CO2 concentrations as compared to 500 micromoles mol-1 CO2, but increased only slightly at 20 degrees C. This suggests a carbohydrate build-up in the leaves at 16 degrees C temperature that reduces plant response to increased CO2 concentrations. The data in the two studies indicate that a PPF of 34 mol m-2 d-1, 20 degrees C temperature, and 1000-2000 micromoles mol-1 CO2 produces optimal tuber yield in potatoes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号