共查询到20条相似文献,搜索用时 0 毫秒
1.
G D Badhwar D E Robbins 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1996,17(2):151-158
Variations in the Earth's trapped (Van Allen) belts produced by solar flare particle events are not well understood. Few observations of increases in particle populations have been reported. This is particularly true for effects in low Earth orbit, where manned spaceflights are conducted. This paper reports the existence of a second proton belt and it's subsequent decay as measured by a tissue-equivalent proportional counter and a particle spectrometer on five Space Shuttle flights covering an eighteen-month period. The creation of this second belt is attributed to the injection of particles from a solar particle event which occurred at 2246 UT, March 22, 1991. Comparisons with observations onboard the Russian Mir space station and other unmanned satellites are made. Shuttle measurements and data from other spacecraft are used to determine that the e-folding time of the peak of the second proton belt. It was ten months. Proton populations in the second belt returned to values of quiescent times within eighteen months. The increase in absorbed dose attributed to protons in the second belt was approximately 20%. Passive dosimeter measurements were in good agreement with this value. 相似文献
2.
R.B. Sheldon 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2000,25(12):2347-2356
It has generally been assumed that a geomagnetic storm is entirely driven by external forces—e.g., solar wind Ey = Vx × Bz, Vx, V2x (where the components of the electric field, E, the magnetic field, B, and velocity, V, are given in GSE coordinates)—which would imply that particle injections in the ring current (RC) or outer radiation belts should be highly correlated. However the data from ISTP are showing that the magnetosphere can have at least two very different responses to the same solar wind (SW) conditions: a classic, enhanced RC with Dst response, or a 1000-fold increase in the outer radiation belt MeV electrons (ORBE). August 29, October 14 and 23, 1996 are examples of Dst storms, whereas April 15, 1996 and January 10, 1997 are examples of MeV storms. It is this second response that is so deadly to some geosynchronous spacecraft, whereas geomagnetic storms are categorized by the first response. Neither of these appear to be correlated to the SW conditions driving substorms. Why should the SW energy appear in the radiation belts or the ring current independently? We hypothesize that the RC couples to the electric power available (Ey), the ORBE couple to the mechanical power available (Vx), and the Tail couples to the magnetic energy (Bz) available in the SW. The transducer for RC may be subauroral parallel potentials, the transducer for ORBE may be the cusp, while the Tail substorm transducer is yet a third independent mechanism for extracting SW energy. Evidence for this theory comes from the novel POLAR satellite that traverses the cusp, the plasmasheet and the radiation belts. 相似文献
3.
A.A. Gusev T. Kohno W.N. Spjeldvik I.M. Martin G.I. Pugacheva A. Turtelli Jr. 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1998,21(12):1805-1808
At the interface between the upper atmosphere and the radiation belt region, there exists a secondary radiation belt consisting mainly of energetic ions that have become neutralized in the ring current and the main radiation belt and then re-ionized by collisions in the inner exosphere. The time history of the proton fluxes in the 0.64 – 35 MeV energy range was traced in the equatorial region beneath the main radiation belts during the three year period from 21 February 1984 to 26 March 1987 using data obtained with the HEP experiment on board the Japanese OHZORA satellite. During most of this period a fairly small proton flux of −1.2 cm−2 s−1 sr−1 was detected on geomagnetic field lines in the range 1.05 < L < 1.15. We report a few surprisingly deep and rapid flux decreases (flux reduction by typically two orders of magnitude). These flux decreases were also long in duration (lasting up to three months). We also registered abrupt flux increases where the magnitude of the proton flux enhancements could reach three orders of magnitude with an enhancement duration of 1–3 days. Possible reasons for these unexpected phenomena are discussed. 相似文献
4.
E V Benton 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1984,4(10):153-160
Measurements of radiation exposures aboard manned space flights of various altitudes, orbital inclinations and durations were performed by means of passive radiation detectors, thermoluminescent detectors (TLD's), and in some cases by active electronic counters. The TLD's and electronic counters covered the lower portion of the LET (linear energy transfer) spectra, while the nuclear track detectors measured high-LET produced by HZE particles. In Spacelab (SL-1), TLD's recorded a range of 102 to 190-millirad, yielding an average low-LET dose rate of 11.2 mrad per day inside the module, about twice the dose rate measured on previous space shuttle flights. Because of a higher inclination of the SL-1 orbit (57 degrees versus 28.5 degrees for previous shuttle flights), substantial fluxes of highly ionizing HZE particles were also observed, yielding an overall average mission dose-equivalent of about 135 millirem, about three times higher than measured an previous shuttle missions. A dose rate more than an order of magnitude higher than for any other space shuttle light was obtained for mission STS-41C, reflecting the highest orbital altitude to date of 519 km. 相似文献
5.
A.A. Leonov A.M. Galper S.V. Koldashov V.V. Mikhailov M. Casolino P. Picozza R. Sparvoli 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2008,41(1):86-91
Nuclear interactions between inner zone protons and atoms in the upper atmosphere provide the main source of energetic H and He isotopes nuclei in the radiation belt. This paper reports on the specified calculations of these isotope intensities using various inner zone proton intensity models (AP-8 and SAMPEX/PET PSB97), the atmosphere drift-averaged composition and density model MSIS-90, and cross-sections of the interaction processes from the GNASH nuclear model code. To calculate drift-averaged densities and energy losses of secondaries, the particles were tracked in the geomagnetic field (modelled through IGRF-95) by integrating numerically the equation of the motion. The calculations take into account the kinematics of nuclear interactions along the whole trajectory of trapped proton. The comparison with new data obtained from the experiments on board RESURS-04 and MITA satellites and with data from SAMPEX and CRRES satellites taken during different phases of solar activity shows that the upper atmosphere is a sufficient source for inner zone helium and heavy hydrogen isotopes. The calculation results are energy spectra and angular distributions of light nuclear isotopes in the inner radiation belt that may be used to develop helium inner radiation belt model and to evaluate their contribution to SEU (single event upset) rates. 相似文献
6.
A Konradi G D Badhwar L A Braby 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1994,14(10):911-921
Active instruments consisting of a tissue equivalent proportional counter (TEPC) and a proton and heavy ion detector (PHIDE) have been carried on a number of Space Shuttle flights. These instruments have allowed us to map out parts of the South Atlantic Particle Anomaly (SAA) and to compare some of its features with predictions of the AP-8 energetic proton flux models. We have observed that consistent with the generally observed westward drift of the surface features of the terrestrial magnetic field the SAA has moved west by about 6.9 degrees longitude between the epoch year 1970 of the AP-8 solar maximum model and the Space Shuttle observations made twenty years later. However, calculations indicate that except for relatively brief periods following very large magnetic storms the SAA seems to occupy the same position in L-space as in 1970. After the great storm of 24 March 1991 reconfiguration of the inner radiation belt and/or proton injection into the inner belt, a second energetic proton belt was observed to form at L approximately = 2. As confirmed by a subsequent flight observations, this belt was shown to persist at least for six months. Our measurements also indicate an upward shift in the L location of the primary belt from L = 1.4 to L = 1.5. In addition we confirm through direct real time observations the existence and the approximate magnitude of the East-West effect. 相似文献
7.
8.
S. Kasahara K. Asamura K. Ogasawara Y. Kazama T. Takashima M. Hirahara Y. Saito 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2009
From the viewpoint of plasma particle measurements in the radiation belt, background noise is a serious problem. High-energy particles penetrating the sensor shielding generate spurious signals, and their count rate often can be comparable to the true signals. In order to attenuate such background noise during medium-energy (5–83 keV) electron measurements, we propose the double energy analyses (DEA) method. DEA is conducted by a combination of an electrostatic analyser (ESA) and avalanche photo-diodes (APDs); ESA and APD independently determine the energy of each incoming particle. By using the DEA method, therefore, the penetrating particles can be rejected when the two energy determinations are inconsistent; spurious noise are caused only when the deposited energy at an APD is by chance consistent with the measured energy by ESA. We formulate the noise count rate and show the advantage of DEA method quantitatively. 相似文献
9.
W Heinrich J Beer 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1984,4(10):133-142
The fluxes of the nuclear component of the galactic cosmic radiation are discussed in terms of energy spectra for the different elements. Influences of shielding by the earth's magnetic field on these spectra are described. Then energy spectra behind absorbing matter are calculated considering energy loss and fragmentation. Based on these energy spectra LET-spectra are calculated. The form of the LET-spectra and their dependence on the composition of the shielding material are discussed. For LET-spectra measured by different detectors the restricted energy losses are converted to LETinfinity. in water. After this it is possible to compare the results of different experiments with each other and with calculated LET-spectra. 相似文献
10.
11.
H.D.R. Evans P. Bühler W. Hajdas E.J. Daly P. Nieminen A. Mohammadzadeh 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2008,42(9):1527-1537
The Standard Radiation Environment Monitor (SREM) is a simple particle detector developed for wide application on ESA satellites. It measures high-energy protons and electrons of the space environment with a 20° angular resolution and limited spectral information. Of the ten SREMs that have been manufactured, four have so far flown. The first model on STRV-1c functioned well until an early spacecraft failure. The other three are on-board, the ESA spacecraft INTEGRAL, ROSETTA and PROBA-1. Another model is flying on GIOVE-B, launched in April 2008 with three L-2 science missions to follow: both Herschel and Planck in 2008, and GAIA in 2011). The diverse orbits of these spacecraft and the common calibration of the monitors provides a unique dataset covering a wide range of B-L* space, providing a direct comparison of the radiation levels in the belts at different locations, and the effects of geomagnetic shielding. Data from the PROBA/SREM and INTEGRAL/IREM are compared with existing radiation belt models. 相似文献
12.
A. Dmitriev G. Popov V. Degtyarev S. Chudnenko G. Reeves 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2002,30(12):2855-2859
Electron flux data from LANL geostationary spacecrafts were statistically treated and ordered in a special magnetic coordinate system (effective L-coordinate and MLT). The data treating procedure allowed to obtain the dynamics of quasi-trapped electrons of different energies on effective L-shells ranging from 6.6 to 7.0. It was found that in quiet conditions a stable fine spatial structure of quasi-trapped electrons exists with maximum of fluxes near L = 6.78 and MLT=12. This structure may be looked at as an asymmetrical “mini-belt”. The position of the maximum depends on electron energy and changes with magnetic activity. The dynamics of this mini-belt for both quiet and disturbed periods is illustrated and discussed. During isolated magnetic storms the mini-belt maximum shifts in a regular manner outward and inward; a diffusion wave of quasi-trapped particles propagates from outside of the geostationary orbit and serves as a source of new particles for the mini-belt. The azimuthal geometry of this diffusion wave extracted from experimental data is illustrated. The possible role of the “mini-belt” is discussed in relation with well-known “anomalous” dynamics of the inner radiation belt. 相似文献
13.
V A Shurshakov S L Huston V M Dachev TsPPetrov J V Ivanov YuVSemkova 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1998,22(4):527-531
In March 1991 the CRRES spacecraft measured a new transient radiation belt resulting from a solar proton event and subsequent geomagnetic disturbance. The presence of this belt was also noted by dosimeter-radiometers aboard the Mir space station (approx. 400 km, 51 degrees orbit) and by particle telescopes on the NOAA-10 spacecraft (850 km, 98 degrees). This event provides a unique opportunity to compare particle flux and dose measurements made by different instruments in different orbits under changing conditions. We present here a comparison of the measurements made by the different detectors. We discuss the topology and dynamics of the transient radiation belt over a period of more than one year. 相似文献
14.
A.V. Dmitriev Yu. S. Minaeva Yu. V. Orlov 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2000,25(12):2311-2314
Relativistic electrons in the slot region of Earth's electron radiation belt are studied using CORONAS-I satellite data obtained in March–May 1994. The strong shifts of the slot latitudinal location (from L≈3 to L≈2) were found. These shifts are associated with the Earth crossing sector boundaries formed by sector corotating structures of the solar wind and interplanetary magnetic field (IMF). The quantitative analysis of the relationship between properties of the slot region and values of the solar wind and IMF parameters was undertaken. The empirical model of the slot region dynamics was developed by means of Artificial Neural Network (ANN). 相似文献
15.
M. Daae Y.Y. Shprits B. Ni J. Koller D. Kondrashov Y. Chen 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2011
Data assimilation is becoming an increasingly important tool for understanding the near Earth hazardous radiation environments. Reanalysis of the radiation belts can be used to identify the electron acceleration mechanism and distinguish local acceleration from radial diffusion. However, for any practical applications we need to determine how reliable is reanalysis, and how significant is the dependence of the results on the assumptions of the code and choice of boundary conditions. We present the sensitivity of reanalysis of the radiation belt electron phase space density (PSD) to the assumed location of the outer boundary, using the VERB code and a Kalman filter. We analyze the sensitivity of reanalysis to changes in the electron-loss throughout the domain, and the sensitivity to the assumed boundary condition and its effect on the innovation vector. All the simulations presented in this study for all assumed loss models and boundary conditions, show that peaks in the phase space density of relativistic electrons build up between 4.5 and 6 RE during relativistic electron flux enhancements in the outer radiation belt. This clearly shows that peaks build up in the heart of the electron radiation belt independent of the assumptions in the model, and that local acceleration is operating there. The work here is also an important step toward performing reanalysis using observations from current and future missions. 相似文献
16.
I.A. Zhulin V.M. Kostin I.A. Pimenov Ju.Ja. Ruzhin V.S. Skomarovsky Ju.M. Zhuchenko Ju.A. Romanovsky 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1981,1(2):319-323
Evidence for an enhancement of the electron flux associated with a barium chaped charge release from “SPOLOKH-2” rocket payload, launched from Volgograd (L = 2.2) on June 29, 1978, will be presented. There is also evidence for a periodic train of particle bursts occurring with about 11 second period during more than 100 seconds after the release. The observed phenomena is interpreted as a “trigger-effect”. 相似文献
17.
W. Miyake Y. Miyoshi A. Matsuoka 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2014
Output current of silicon solar cells of Akebono satellite orbiting in the inner magnetosphere decreased from 13 A in 1989 to about 7 A in 2009, due to accumulated damage by energetic particles. A fair correlation between the monthly decrease rate of solar cell output current and trapped proton flux was found between 1989 and 1992, indicating that trapped energetic protons are responsible for the solar cell degradation. Simple variation from month to month was dominated by a fluctuation with one-year period and the correlation was not discernible after 1993. On the other hand, during orbiting the earth, another kind of decrease of output current emerged at low altitude above the sub-solar point, i.e., in the midst of sunlit condition. The decrease was larger in later years. The fact indicates more prominent temperature effect in the later years because of progress of the degradation. By removing data affected by the orbit condition above, variation from the same month in the previous year shows a clear oscillation due to orbit precession correlated with trapped energetic proton flux up to 1996. The amplitude of the annual variation oscillation tends to be larger than that expected from a degradation model based on energetic proton distribution of the NASA’s AP8 model. The larger oscillation amplitude suggests that the proton radiation belt was more sharply localized than given by the AP8 model throughout the early half of 1990s. 相似文献
18.
P J McNulty E G Stassinopoulos 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1994,14(10):947-957
Future manned missions beyond low earth orbit require accurate predictions of the risk to astronauts and to critical systems from exposure to ionizing radiation. For low-level exposures, the hazards are dominated by rare single-event phenomena where individual cosmic-ray particles or spallation reactions result in potentially catastrophic changes in critical components. Examples might be a biological lesion leading to cancer in an astronaut or a memory upset leading to an undesired rocket firing. The risks of such events appears to depend on the amount of energy deposited within critical sensitive volumes of biological cells and microelectronic components. The critical environmental information needed to estimate the risks posed by the natural space environments, including solar flares, is the number of times more than a threshold amount of energy for an event will be deposited in the critical microvolumes. These predictions are complicated by uncertainties in the natural environments, particularly the composition of flares, and by the effects of shielding. Microdosimetric data for large numbers of orbits are needed to improve the environmental models and to test the transport codes used to predict event rates. 相似文献
19.
Song Fu Fengming He Xudong Gu Binbin Ni Zheng Xiang Jiang Liu 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2018,61(8):2091-2098
As an important loss mechanism of radiation belt electrons, electromagnetic ion cyclotron (EMIC) waves show up as three distinct frequency bands below the hydrogen (H+), helium (He+), and oxygen (O+) ion gyrofrequencies. Compared to O+-band EMIC waves, H+- and He+-band emissions generally occur more frequently and result in more efficient scattering removal of <~5?MeV relativistic electrons. Therefore, knowledge about the occurrence of these two bands is important for understanding the evolution of the relativistic electron population. To evaluate the occurrence pattern and wave properties of H+- and He+-band EMIC waves when they occur concurrently, we investigate 64 events of multi-band EMIC emissions identified from high quality Van Allen Probes wave data. Our quantitative results demonstrate a strong occurrence dependence of the multi-band EMIC emissions on magnetic local time (MLT) and L-shell to mainly concentrate on the dayside region of L?=?~4–6. We also find that the average magnetic field amplitude of H+-band waves is larger than that of He+-band waves only when L?<?4.5 and AE1?<?300?nT, and He+-band emissions are more intense under all other conditions. In contrast to 5 events that have average H+-band amplitude over 2 nT, 19 events exhibit >2 nT He+-band amplitude, indicating that the He+-band waves can be more easily amplified than the H+-band waves under the same circumstances. For simultaneous occurrences of the two EMIC wave bands, their frequencies vary with L-shell and geomagnetic activity: the peak wave frequency of H+-band emissions varies between 0.25 and 0.8 fcp with the average between 0.25 and 0.6 fcp, while that of He+-band emissions varies between 0.03 and 0.23 fcp with the average between 0.05 and 0.15 fcp. These newly observed occurrence features of simultaneous H+- and He+-band EMIC emissions provide improved information to quantify the overall contribution of multi-band EMIC waves to the loss processes of radiation belt electrons. 相似文献
20.
R J Fry P Powers-Risius E L Alpen E J Ainsworth R L Ullrich 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1983,3(8):241-248
Recent results for neutron radiation-induced tumors are presented to illustrate the complexities of the dose-response curves for high-LET radiation. It is suggested that in order to derive an appropriate model for dose-response curves for the induction of tumors by high-LET radiation it is necessary to take into account dose distribution, cell killing and the susceptibility of the tissue under study. Preliminary results for the induction of Harderian gland tumors in mice exposed to various heavy ion beams are presented. The results suggest that the effectiveness of the heavy ion beams increases with increasing LET. The slopes of the dose-response curves for the different high-LET radiations decrease between 20 and 40 rads and therefore comparisons of the relative effectiveness should be made from data obtained at doses below about 20-30 rads. 相似文献