首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Atominstitute of the Austrian Universities has conducted various space research missions in the last 12 years in cooperation with the Institute for Biomedical Problems in Moscow. They dealt with the exact determination of the radiation hazards for cosmonauts and the development of precise measurement devices. Special emphasis will be laid on the last experiment on space station MIR the goal of which was the determination of the depth distribution of absorbed dose and dose equivalent in a water filled Phantom. The first results from dose measurements onboard the International Space Station (ISS) will also be discussed. The spherical Phantom with a diameter of 35 cm was developed at the Institute for Biomedical Problems and had 4 channels where dosimeters can be exposed in different depths. The exposure period covered the timeframe from May 1997 to February 1999. Thermoluminescent dosimeters (TLDs) were exposed inside the Phantom, either parallel or perpendicular to the hull of the spacecraft. For the evaluation of the linear energy transfer (LET), the high temperature ratio (HTR) method was applied. Based on this method a mean quality factor and, subsequently, the dose equivalent is calculated according to the Q(LET infinity) relationship proposed in ICRP 26. An increased contribution of neutrons could be detected inside the Phantom. However the total dose equivalent did not increase over the depth of the Phantom. As the first Austrian measurements on the ISS dosimeter packages were exposed for 248 days, starting in February 2001 at six different locations onboard the ISS. The Austrian dosimeter sets for this first exposure on the ISS contained five different kinds of passive thermoluminescent dosimeters. First results showed a position dependent absorbed dose rate at the ISS.  相似文献   

2.
The health risks associated with exposure to various components of space radiation are of great concern when planning manned long-term interplanetary missions, such as future missions to Mars. Since it is not possible to measure the radiation environment inside of human organs in deep space, simulations based on radiation transport/interaction codes coupled to phantoms of tissue equivalent materials are used. However, the calculated results depend on the models used in the codes, and it is therefore necessary to verify their validity by comparison with measured data. The goal of this paper is to compare absorbed doses obtained in the MATROSHKA-R experiment performed at the International Space Station (ISS) with simulations performed with the three-dimensional Monte Carlo Particle and Heavy-Ion Transport code System (PHITS). The absorbed dose was measured using passive detectors (packages of thermoluminescent and plastic nuclear track detectors) placed on the surface of the spherical tissue equivalent phantom MATROSHKA-R, which was exposed aboard the ISS in the Service Zvezda Module from December 2005 to September 2006. The data calculated by PHITS assuming an ISS shielding of 3 g/cm2 and 5 g/cm2 aluminum mass thickness were in good agreement with the measurements. Using a simplified geometrical model of the ISS, the influence of variations in altitude and wall mass thickness of the ISS on the calculated absorbed dose was estimated. The uncertainties of the calculated data are also discussed; the relative expanded uncertainty of absorbed dose in phantom was estimated to be 44% at a 95% confidence level.  相似文献   

3.
4.
The experiment IVIDIL (Influence of Vibrations on Diffusion in Liquids) is scheduled to be performed in forthcoming fall 2009 onboard the ISS, inside the SODI instrument mounted in the Glovebox on the ESA Columbus module. It is planned to carry out 39 experimental runs with each of them lasting 18 h. The objective of the experiment is threefold.  相似文献   

5.
Described is the Liulin-5 active dosimetric telescope designed for measurement of the space radiation dose depth-distribution in a human phantom on the Russian Segment of the International Space Station (ISS). The Liulin-5 experiment is a part of the international project MATROSHKA-R on ISS. The MATROSHKA-R project is aimed to study the depth-dose distribution at the sites of critical organs of the human body, using models of human body-anthropomorphic and spherical tissue-equivalent phantoms. The aim of Liulin-5 experiment is a long term (4-5 years) investigation of the radiation environment dynamics inside the spherical tissue-equivalent phantom, mounted in different compartments. Energy deposition spectra, linear energy transfer spectra, and flux and dose rates for charged particles will be measured simultaneously with near real time resolution at different depths of the phantom by means of three silicon detectors. Data obtained together with data from other active and passive dosimeters will be used to estimate the radiation risk to the crewmembers, which verify the models of radiation environment in low Earth orbit. Presented are the test results of the prototype unit. Liulin-5 will be flown on the ISS in the year 2003.  相似文献   

6.
Polycrystalline uracil thin layers participate in the phage and uracil response (PUR) experiment, assigned to the biological dosimetry of the extraterrestrial solar radiation on the International Space Station (ISS). In ground based experiments (experiment verification tests), the following space parameters were simulated and studied: temperature, vacuum and short wavelength UV (UV-C, down to 200 nm) radiation. The closed uracil samples proved to be vacuum-tight for 7 days. In the tested temperature range (from -20 to +40 degrees C) the uracil samples are stable. The kinetic of dimer formation (dimerization) and reversion (monomerization) of uracil dimers due to short wavelength UV radiation was detected, the monomerization efficiency of the polychromatic deuterium lamp is higher than that of the germicidal lamp. A mathematical model describing the kinetic of monomerization-dimerization was constructed. Under the influence of UV radiation the dimerization-monomerization reactions occur simultaneously, thus the additivity law of the effect of the various wavelengths is not applicable.  相似文献   

7.
Described is the Liulin-5 experiment and instrumentation, developed for investigation of the space radiation doses depth distribution in a human phantom on the Russian Segment of the International Space Station (ISS). Liulin-5 experiment is a part of the international project MATROSHKA-R on ISS. The experiment MATROSHKA-R is aimed to study the depth dose distribution at the sites of critical organs of the human body, using models of human body-anthropomorphic and spherical tissue-equivalent phantoms. The aim of Liulin-5 experiment is long term (4-5 years) investigation of the radiation environment dynamics inside the spherical tissue-equivalent phantom, mounted in different places of the Russian Segment of ISS. Energy deposition spectra, linear energy transfer spectra, flux and dose rates for protons and the biologically-relevant heavy ion components of the galactic cosmic radiation will be measured simultaneously with near real time resolution at different depths of the phantom by a telescope of silicon detectors. Data obtained together with data from other active and passive dosimeters will be used to estimate the radiation risk to the crewmembers, verify the models of radiation environment in low Earth orbit, validate body transport model and correlate organ level dose to skin dose. Presented are the test results of the prototype unit. The spherical phantom will be flown on the ISS in 2004 year and Liulin-5 experiment is planned for 2005 year.  相似文献   

8.
Particle intensity, dose equivalent and absorbed dose have been measured on board the space shuttle Endeavour during STS-108 in December 2001 by Dublin Institute for Advanced Studies (DIAS). The dose estimates are based on very accurate measurements of recoils produced in CR-39 by cosmic ray primary and secondary protons and heavier nuclei and by secondary neutrons. The corresponding LET spectra were used to determine dose equivalent and absorbed dose values. Estimates of the total flux of Z > or = 2 nuclei have been undertaken and a preliminary charge spectrum was measured. Some comparisons are made with preliminary data obtained on STS-105 (ISS Expedition) and other missions using CR-39 detectors.  相似文献   

9.
During the construction phase of the International Space Station (ISS), early flight opportunities have been identified (including designated Utilization Flights, UF) on which early science experiments may be performed. The focus of NASA's and other agencies' biological studies on the early flight opportunities is cell and molecular biology; with UF-1 scheduled to fly in fall 2001, followed by flights 8A and UF-3. Specific hardware is being developed to verify design concepts, e.g., the Avian Development Facility for incubation of small eggs and the Biomass Production System for plant cultivation. Other hardware concepts will utilize those early research opportunities onboard the ISS, e.g., an Incubator for sample cultivation, the European Modular Cultivation System for research with small plant systems, an Insect Habitat for support of insect species. Following the first Utilization Flights, additional equipment will be transported to the ISS to expand research opportunities and capabilities, e.g., a Cell Culture Unit, the Advanced Animal Habitat for rodents, an Aquatic Facility to support small fish and aquatic specimens, a Plant Research Unit for plant cultivation, and a specialized Egg Incubator for developmental biology studies. Host systems (Figure 1A, B: see text), e.g., a 2.5 m Centrifuge Rotor (g-levels from 0.01-g to 2-g) for direct comparisons between g and selectable g levels, the Life Sciences Glovebox for contained manipulations, and Habitat Holding Racks (Figure 1B: see text) will provide electrical power, communication links, and cooling to the habitats. Habitats will provide food, water, light, air and waste management as well as humidity and temperature control for a variety of research organisms. Operators on Earth and the crew on the ISS will be able to send commands to the laboratory equipment to monitor and control the environmental and experimental parameters inside specific habitats. Common laboratory equipment such as microscopes, cryo freezers, radiation dosimeters, and mass measurement devices are also currently in design stages by NASA and the ISS international partners.  相似文献   

10.
空间站微重力流体实验设备需求分析   总被引:1,自引:0,他引:1       下载免费PDF全文
对国际空间站和中国科学实验卫星及载人飞行器上开展的微重力流体实验情况进行论述和分析,重点分析了国际空间站(ISS)微重力流体科学实验设备情况.根据中国空间微重力流体物理科学发展需求,结合国际空间站微重力流体科学实验对设备的需求,提出了未来在中国空间站开展微重力流体实验时空间实验设备需要重点考虑和解决的问题,同时提出相关设计建议.   相似文献   

11.
The Spacelab-Mir-1 (SLM-1) mission is the first docking of the Space Shuttle Atlantis (STS-71) with the Orbital Station Mir in June 1995. The SLM-1 "Greenhouse-2" experiment will utilize the Russian-Bulgarian-developed plant growth unit (Svet). "Greenhouse-2" will include two plantings (1) designed to test the capability of Svet to grow a crop of Superdwarf wheat from seed to seed, and (2) to provide green plant material for post-flight analysis. Protocols, procedures, and equipment for the experiment have been developed by the US-Russian science team. "Greenhouse-2" will also provide the first orbital test of a new Svet Instrumentation System (SIS) developed by Utah State University to provide near real time data on plant environmental parameters and gas-exchange rates. SIS supplements the Svet control and monitoring system with additional sensors for substrate moisture, air temperature, IR leaf temperature, light, oxygen, pressure, humidity, and carbon-dioxide. SIS provides the capability to monitor canopy transpiration and net assimilation of the plants growing in each vegetation unit (root zone) by enclosing the canopy in separate, retractable, ventilated leaf chambers. Six times during the seed-to-seed experiment, plant samples will be collected, leaf area measured, and plant parts fixed and/or dried for ground analysis. A second planting initiated 30 days before the arrival of a U.S. Shuttle [originally planned to be STS-71] is designed to provide green material at the vegetative development stage for ground analysis. [As this paper is being edited, the experiment has been delayed until after the arrival of STS-71.]  相似文献   

12.
Biochips might be suited for planetary exploration. Indeed, they present great potential for the search for biomarkers – molecules that are the sign of past or present life in space – thanks to their size (miniaturized devices) and sensitivity. Their detection principle is based on the recognition of a target molecule by affinity receptors fixed on a solid surface. Consequently, one of the main concerns when developing such a system is the behavior of the biological receptors in a space environment. In this paper, we describe the preparation of an experiment planned to be part of the EXPOSE-R2 mission, which will be conducted on the EXPOSE-R facility, outside the International Space Station (ISS), in order to study the resistance of biochip models to space constraints (especially cosmic radiation and thermal cycling). This experiment overcomes the limits of ground tests which do not reproduce exactly the space parameters. Indeed, contrary to ground experiments where constraints are applied individually and in a limited time, the biochip models on the ISS will be exposed to cumulated constraints during several months. Finally, this ISS experiment is a necessary step towards planetary exploration as it will help assessing whether a biochip can be used for future exploration missions.  相似文献   

13.
The time has come to give serious thought to the use of the International Space Station (ISS) as a space platform to advance remote sensing research in several scientific disciplines. The European scientific community has been developing instrumentation for deployment on the ISS for some time now. Recently, NASA opened competitions for scientific programs to be supported as “Missions of Opportunity” to utilize the “EXPRESS Pallet” facility on the ISS. A single EXPRESS Pallet has the capability of carrying a collection of instruments similar to the payload of a conventional satellite. A major difference between ISS and satellite programs is that the research funding will be expended on scientific instrumentation and analysis and not on a spacecraft, launch vehicle, and flight operations. As the ISS becomes fully operational, EXPRESS Pallets could be deployed in short periods of time compared to preparing a satellite program. The ability to retrieve, improve, and re-fly an instrument is important to a progressive research program. This allows the experiment to be responsive to data analysis in a timely manner and also keep pace with developing technology.  相似文献   

14.
The aim of the experiment "Seeds" on the Sowjetic satellite Biokosmos 9 was the observation of mutagenic effects caused at special loci of seeds of Arabidopsis thaliana and assigned to particles of the Cosmic radiation. Two types of exposure units were flown: A low-shielding unit Type I, mounted at the surface of the satellite (1.4 g/cm2 shielding) and, for comparison, an identical item inside (16 g/cm2 shielding), using nuclear emulsion as track detectors. A Type II unit, flown inside (18g/cm2 shielding) was mounted with AgCl track detectors. The layout will be briefly described. A first set of dosimetric data from the physical evaluation of the experiment will be presented. The subdivision into charge- and LET-groups shows a rather high contribution of the intermediate LET-group (350-1000 MeV/cm) due to medium heavy particles (Z = 6-10) and to enders of light (p, alpha) particles.  相似文献   

15.
The ALTEA project participates to the quest for increasing the safety of manned space flights. It addresses the problems related to possible functional damage to neural cells and circuits due to particle radiation in space environment. Specifically it aims at studying the functionality of the astronauts' Central Nervous Systems (CNS) during long space flights and relating it to the peculiar environments in space, with a particular focus on the particle flux impinging in the head. The project is a large international and multidisciplinary collaboration. Competences in particle physics, neurophysiology, psychophysiology, electronics, space environment, data analyses will work together to construct the fully integrated vision electrophysiology and particle analyser system which is the core device of the project: an helmet-shaped multi-sensor device that will measure concurrently the dynamics of the functional status of the visual system and passage of each particle through the brain within a pre-determined energy window. ALTEA is scheduled to fly in the International Space Station in late 2002. One part of the multi-sensor device, one of the advanced silicon telescopes, will be launched in the ISS in early 2002 and serve as test for the final device and as discriminating dosimeter for the particle fluences within the ISS.  相似文献   

16.
“Protective curtain” was the physical experiment onboard the International Space Station (ISS) aimed on radiation measurement of the dose – reducing effect of the additional shielding made of hygienic water-soaked wipes and towels placed on the wall in the crew cabin of the Service module Zvezda. The measurements were performed with 12 detector packages composed of thermoluminescent detectors (TLDs) and plastic nuclear track detectors (PNTDs) placed at the Protective curtain, so that they created pairs of shielded and unshielded detectors.  相似文献   

17.
The paper describes operation of 'SVET' space greenhouse onboard the 'MIR' orbital station since 15 June 1990 and the adopted biotechnological principles. The microprocessor and measuring systems for monitoring and control of the environmental parameters in the Plants growth chamber are presented. Information about the dynamic of these parameters in the course of the first space experiments with vegetables, obtained by means of telemetric data processing, is given. A draft program for the development of next generations of greenhouses of the same type as 'SVET', but with a larger area and capabilities, is worked out.  相似文献   

18.
The paper gives an overview on the fields of debris research performed at the TUBS. The orbital debris flux of all objects larger than 1cm has been established and simulated by a mathematical model in the past mainly on the basis of simulating explosion fragments. However the flux in the millimeter and submillimeter size range seems to be largely influenced by collisions and their ejecta on high circular or on eccentric orbits. The angular distribution of the impact flux on targets at various altitudes and on various inclinations are presented. This angular distribution has also influence on the surface impact flux on a space station, where also the self shielding has to be considered. Results for the ISS are presented. The risk of impacts of larger not shieldable objects on a space station may become too high, so that collision avoidance manoeuvres must be envisaged, the feasibility of which using onboard detectors is discussed.  相似文献   

19.
During the years 2002 and 2003, three closed system experiments were carried out in the "Laboratory Biosphere" facility located in Santa Fe, New Mexico. The program involved experimentation of "Hoyt" Soy Beans, (experiment #1) USU Apogee Wheat (experiment #2) and TU-82-155 sweet potato (experiment #3) using a 5.37 m2 soil planting bed which was 30 cm deep. The soil texture, 40% clay, 31% sand and 28% silt (a clay loam), was collected from an organic farm in New Mexico to avoid chemical residues. Soil management practices involved minimal tillage, mulching, returning crop residues to the soil after each experiment and increasing soil biota by introducing worms, soil bacteria and mycorrhizae fungi. High soil pH of the original soil appeared to be a factor affecting the first two experiments. Hence, between experiments #2 and #3, the top 15 cm of the soil was amended using a mix of peat moss, green sand, humates and pumice to improve soil texture, lower soil pH and increase nutrient availability. This resulted in lowering the initial pH of 8.0-6.7 at the start of experiment #3. At the end of the experiment, the pH was 7.6. Soil nitrogen and phosphorus has been adequate, but some chlorosis was evident in the first two experiments. Aphid infestation was the only crop pest problem during the three experiments and was handled using an introduction of Hyppodamia convergens. Experimentation showed there were environmental differences even in this 1200 cubic foot ecological system facility, such as temperature and humidity gradients because of ventilation and airflow patterns which resulted in consequent variations in plant growth and yield. Additional humidifiers were added to counteract low humidity and helped optimize conditions for the sweet potato experiment. The experience and information gained from these experiments are being applied to the future design of the Mars On Earth(R) facility (Silverstone et al., Development and research program for a soil-based bioregenerative agriculture system to feed a four person crew at a Mars base, Advances in Space Research 31(1) (2003) 69-75; Allen and Alling, The design approach for Mars On Earth(R), a biospheric closed system testing facility for long-term space habitation, American Institute of Aeronautics and Astronautics Inc., IAC-02-IAA.8.2.02, 2002).  相似文献   

20.
In order to evaluate the effects of gravity on growing plants, we conducted ground based long-term experiments with dwarf wheat, cultivar Apogee and Chinese cabbage, cultivar Khibinskaya. The test crops had been grown in overhead position with HPS lamp below root module so gravity and light intensity gradients had been in opposite direction. Plants of the control crop grew in normal position under the same lamp. Both crops were grown on porous metallic membranes with stable -1 kPa matric potential on their surface. Results from these and other studies allowed us to examine the differences in growth and development of the plants as well as the root systems in relation to the value of the gravity force influence. Dry weight of the roots from test group was decreased in 2.5 times for wheat and in 6 times - at the Chinese cabbage, but shoot dry biomass was practically same for both test and control versions. A harvest index of the test plants increased substantially. The data shows, that development of the plants was essentially changed in microgravity. The experiments in the space greenhouse Svet aboard the Mir space station proved that it is possible to compensate the effects of weightlessness on higher plants by manipulating gradients of environmental parameters (i.e. photon flux, matric potential in the root zone, etc.). However, the average productivity of Svet concerning salad crops even in ground studies did not provide more than 14 g fresh biomass per day. This does not provide a sufficient level of supplemental nutrients to the crew of the ISS. A cylindrical design of a space plant growth chamber (SPGC) allows for maximal productivity in presence of very tight energy and volume limitations onboard the ISS and provides a number of operational advantages. Productivity from this type of SPGF with a 0.5 kW energy utilization when salad growing would provide approximately 100 g of edible biomass per day, which would almost satisfy requirements for a crew of two in vitamin C and carotene and partly vitamin B group as well as rough fiber.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号