首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
栅极间距是影响推力器离子束流的发散角、推力大小的关键参数,为了解决栅极组件在装配过程中栅极间距自动检测的技术难题,针对栅极孔径的特殊结构和光线传播的特性,建立了栅极间距和小孔面积的数学模型,提出了基于机器视觉的非接触式平面栅极间距检测方法并搭建试验平台。选取栅极中心孔位进行35次重复试验,该方法的标准差为12μm,具有较高的重复精度。精度验证试验结果表明,该系统精度高于±20μm,满足离子推力器装配过程中的栅极间距测量要求,在实际应用中有望替代现有人工检测方法。  相似文献   

2.
李俊林  周逸浩  杨铖  沈岩 《推进技术》2023,(12):222-229
为消除场致发射电推力器(Field emission electric propulsion,FEEP)羽流发散角度过大给推进器寿命和可靠性带来的不利影响,研究了聚焦电极阵列空间位置对羽流聚焦效果的影响,并通过正交试验法给出了最优电极分布。通过数值仿真对FEEP的离子运动过程建模,采用正交试验方法电极阵列进行研究,关注其在不同空间位置下的聚焦效果,得到了离子出射半角分布和推力大小。结果表明,聚焦极的位置决定了羽流的聚焦效果,其次是提取极和加速极;聚焦极径向距离发射极1600μm,且提取极径向和轴向坐标为(800μm,500μm)时能得到最优的聚焦效果。本文验证了正交试验方法在聚焦电极阵列设计上的可行性,同时还为聚焦电极阵列设计提供了有效的分析方法和设计策略。  相似文献   

3.
为了获得不同推力器工况对射频自偏压效应离子推力器的自偏压幅值和束流特性的影响,本文通过地面实验研究了栅极射频功率、线圈放电功率、工质种类对自偏压幅值和羽流区等离子体参数的影响,同时对直流栅极工况和射频栅极工况下的束流特性进行了对比。研究结果表明:栅极射频功率的增大会提高自偏压幅值并提升束流强度,但在较高栅极射频功率下,栅极下游区域将发生自持放电并形成等离子体;放电腔内放电模式转换会通过改变等离子体阻抗的方式大幅影响栅极直流自偏压幅值和栅极电压的射频分量,进而影响羽流区等离子体参数;与直流栅极工况相比,射频栅极能同时引出并加速离子和电子,并在栅极下游实现自中和,且在Ar,Kr,Xe三种工质下均具有自中和能力。  相似文献   

4.
在不改变霍尔推力器特征尺寸的条件下为了提高其低功率时的性能,采用缩小通道局部通流面积的方法,利用增加电离区原子密度来提高工质利用率。实验结果表明,该方法能有效拓展低功率放电范围,控制工质电离过程,增加工质利用率,并提高霍尔推力器在低功率下的推力、比冲和效率性能。羽流发散角优化是后续变截面研究中需要重点关注的问题。  相似文献   

5.
为了获得射频离子推力器离子束流随放电参数的变化规律,采用试验研究的方法,就推力器引出束流与射频功率强度、工质种类、工质流量之间的调节规律开展了研究,搭建了射频离子推力器束流调节试验系统。研究结果表明:屏栅电压1200V,加速电压-250V,射频功率200W~700W,工质流量0.2mg/s~4.76mg/s,Xe,Ar,O_2,N_2四种工质下能够可靠放电并稳定引出,实现束流从54mA~467mA的调节,电离效率XeArO_2N_2,离子束流随射频功率和工质流量线性增加,在1.01mg/s的氙工质下,推力、比冲随射频功率从100W~400W线性增加实现推力7.35mN~27.5mN,比冲1191s~3696s大范围连续可调,工质利用率为21.1%~78.8%,并在射频功率为276W时工质利用率和功耗之间存在明显拐点,在应用中要根据任务选择最佳工作区间,合理控制工作参数可以提高推力器工作性能和效率。  相似文献   

6.
为了研究30cm离子推力器三栅极组件设计参数对预估寿命的影响,在完成失效模式分析的基础上,通过PIC-MCC方法对离子推力器三栅极组件的离子溅射速率进行了计算,建立起栅孔二维寿命预估模型,并针对栅极设计参数对预估寿命的影响进行研究。结果显示:导致三栅极组件的主要失效模式为5kW高功率模式下的离子直接轰击所造成的栅极早期结构失效,且减速栅的过快离子溅射腐蚀成为影响三栅极组件寿命的关键,而不同工作模式不会产生新的失效方式,仅影响栅极的离子溅射速率以及寿命;在现有三栅极设计参数条件下,当推力器工作时,栅极引出的离子束流处于明显欠聚焦状态,且加速栅寿命预估值约为9062h,而减速栅约为2642h;通过PIC-MCC方法得到的栅极三个关键设计参数对寿命的影响模拟结果显示,降低加速栅电压对提升减速栅寿命的作用较小;缩小加速栅与减速栅冷态间距后,离子溅射速率会随着冷态间距的缩小逐渐降低,冷态间距由1mm缩小至0.6mm后,减速栅在5kW工况下的工作寿命可提升至10726h,且经试验验证该间距可满足推力器力学环境试验要求;缩小屏栅孔径对改变离子束流引出形状具有显著作用,单孔束流发散角度随着屏栅孔径的缩小出现了明显降低,且束流离子几乎不会再直接轰击至减速栅上游区域,当屏栅孔径由1.9mm缩小至1.6mm后,减速栅工作寿命可提升至9259h;分析结果对后续开展栅极组件的寿命优化设计提供了参考。  相似文献   

7.
为了实现离子推力器多模式化,分析了离子推力器功率宽范围调节限制因素,提出了两种宽范围调节策略;针对我国小行星探测任务,完成了30cm多模式离子推力器研制、功率宽范围调节限制条件确定、以及两种调节策略下多模式工作点设计及对比研究。结果显示,通过降低放电室磁场强度可延伸离子推力器最小稳定工作功率,提高束流均匀性,实现离子推力器更宽功率范围多工作点设计;功率宽范围调节主要是屏栅电压和束电流的宽范围调节,二者通过栅极导流系数限制和交叉限制而约束;推力随功率增加呈线性增加关系,比冲随功率的增加总体上呈先快速增加后趋于稳定的趋势;30cm多模式离子推力器在0.25kW~5kW内稳定工作,推力10mN~186mN,比冲1522s~3586s。  相似文献   

8.
李娟  刘洋  楚豫川  曹勇 《推进技术》2011,32(6):751-755,899
离子光学系统的离子束引出过程是离子推力器重要的物理过程,该过程直接关系到推力器的推力、比冲、效率等参数。为研究离子在离子推力器光学系统中的运动特性,使用了基于IFE-PIC(Immersed Finite Element Particle-In-Cell)的离子推力器光学系统离子束引出过程的三维数值计算模型,计算了栅极间电场分布、电荷密度,栅极冲击电流及欠聚焦极限。计算结果表明,当屏栅极电压不同时,发生欠聚焦的等离子束电流也不同。在欠聚焦工况下,一部分离子与栅极碰撞,产生冲击电流。冲击电流随电离室等离子体数密度增加而增大。  相似文献   

9.
为了改善发散场离子推力器束流均匀性,提出与放电室等离子体密度和电子温度分布相匹配的变孔径栅极设计方案。采用粒子云网格法(PIC)和蒙特卡洛碰撞(MCC)结合的数值计算方法(PIC/MCC)对变孔径设计方案进行仿真,并与现有设计仿真结果进行对比,分析两种设计不同分区电势、离子密度和束流平直度等参数特性。计算结果表明,相对于现有设计,变孔径设计栅极中心区域轴向电场强度变小,鞍点电势绝对值降低1.8V,离子聚焦点内移,离子密度降低,束径变小;边缘区域电场强度增大,聚焦点外移,离子密度提高,束径增大。引出束流发散角变小,平直度由原来的0.41提升至0.57,离子推力器可靠性得到有效提高。  相似文献   

10.
获得射频离子推力器放电与引出特性调节规律,是制定性能调节控制优化算法的核心问题。为了获得射频离子推力器放电与引出特性,采用数值计算与试验研究的手段,对LRIT-40射频离子推力器放电与引出特性调节规律开展了研究。研究结果表明:模型能够正确描述放电与引出特性调节规律;射频功率适合作为精调参数,用于连续平滑地调节性能;屏栅电压调节存在明显拐点,当屏栅电压低于拐点,可配合射频功率对性能进行精调;当屏栅电压高于拐点,适合作为快速响应调节参数;65W~85W射频功率、800V~1500V屏栅电压能够实现推力1.5mN~4.7mN,比冲1300s~3920s宽范围调节,制定性能调节优化控制算法时,应根据需要选取最小参数调节区间。  相似文献   

11.
脉冲等离子体推力器(PPT)的性能受多方面因素的影响,包括放电参数以及推力器本体结构等。通过对脉冲等离子体推力器的工作原理和物理学模型的分析,研究了PPT的效率、比冲、推力、元冲量、推功比等性能参数与电极结构、电气参数的关系,并设计了实验,对效率、比冲、元冲量等与放电能量、电极间距的关系进行了验证。结果表明,效率、比冲、元冲量均随放电能量的提高而增大,元冲量在电极间距为50 mm时大于间距为30 mm、40 mm时的值。根据实验结果,提出了设计高性能PPT的一些优化条件,对PPT的设计有参考意义。  相似文献   

12.
霍尔推力器羽流发散角的定向探针测量方法   总被引:3,自引:3,他引:0  
宁中喜 《推进技术》2011,32(6):895-899
针对霍尔推力器的聚焦型束流,提出了一种利用定向探针在近场区快速测算羽流发散角的方法,并且还能获到喷口附近离子通流密度的分布及扩散特性。不确定度分析显示,利用该方法计算羽流发散角的偏差来源主要是离子电流的径向截断,但对于聚焦型等离子体束流在合理选择测量位置的情况下,其测算不确定度最小可达到±1%。  相似文献   

13.
郑茂繁  张天平  孟伟  李兴坤  梁凯 《推进技术》2015,36(7):1116-1120
为了满足未来深空探测任务的需求,在20cm氙离子推力器的技术基础上,对其性能进行扩展提升研究,将推力提高50%,使推力由原来的40m N提高到60m N。通过对离子推力器工作参数的分析与研究,确定了离子推力器60m N推力模式的工作参数,并进行了优化实验。结果表明:性能扩展的20cm氙离子推力器推力提高到60m N,比冲提高到3500s,效率也提高到65%,并能够在40m N和60m N二种推力模式下工作。通过对2台推力器的组合,能够实现40,60,80,100,120m N五种推力工作模式。  相似文献   

14.
于博  黄浩  焦蛟  康小录  赵青 《推进技术》2019,40(10):2383-2393
纳米颗粒场致发射推力器(NFET)是一种用于微小卫星的固体工质静电推力器,为促进NFET的工程研制,提出一种新的自中和技术——反向充电中和策略。为研究这种自中和技术的设计方法,建立相应的数值模型以模拟该中和技术下羽流输运过程,并且,在真空舱中开展NFET的羽流测量试验来验证中和模型的正确性。以比色温度计和"打靶法"装置来分别测量羽流温度分布和推力,通过试验与仿真结果的对比,羽流温度变化的试验结果与仿真结果在定性规律上一致,推力的计算误差在9%~10%。在验证模型正确性的基础上,利用该数值模型对关键设计参数进行数值分析。结果表明:引出极与发射极的内径比变化会导致外加电场对剩余电荷颗粒作负功,引起推力下降,该物理参数在0.94附近时,推力达到极大值;而随着颗粒直径的增加,羽流中和区域整体向下游推移,推力升高。本文结论可为NFET的反向充电中和策略提供设计参考。  相似文献   

15.
10cm离子推力器放电室性能优化研究   总被引:2,自引:2,他引:0       下载免费PDF全文
要实现离子推力器较高的效率和比冲等综合性能指标,优化的放电室性能是其首要的前提条件。为了获得10cm离子推力器优化的放电室性能,在放电室初始设计方案基础上,通过对工作参数和结构参数的不同组合试验,开展了性能优化研究,采用的主要手段是关键特征尺寸调节、流率调节和磁场参数的调节。试验获得了不同参数组合的性能变化趋势,得出了优化的放电室结构参数和工作参数。优化后的离子推力器综合性能试验结果表明,在推力15.6m N、比冲3100s的设计工况下放电损耗约为227W/A,放电室工质利用率为91%。  相似文献   

16.
深空探测任务要求太阳能电推进系统具有大推力、高比冲特性,同时随着航天器离开太阳距离的增加,太阳能效率快速降低,要求电推进系统具备功率宽范围高效工作能力。为了研究兰州空间技术物理研究所研制的40cm离子推力器功率宽范围工作能力,从实验角度研究了1~10k W 40cm离子推力器的工作性能及其变化规律。通过对离子推力器工作参数和性能的分析与计算,依据功率调节方法确定了40cm离子推力器1~10k W多模式工作点电参数;通过阴极流率优化和放电损耗优化实验确定了多模式工作点最佳供气参数。在设计确定的电参数和实验确定的供气参数下,开展了1~10k W调节实验,获取了40cm离子推力器的工作性能及其变化规律。实验结果表明:40cm离子推力器可在1~10k W内稳定工作,推力42~336m N,比冲2174~4389s,效率41%~72%;随功率增加效率增高,当功率大于2.5k W时效率大于63%。  相似文献   

17.
宋莹莹  王蒙  顾左  孔令轩 《推进技术》2019,40(7):1668-1675
目前Kaufman离子推力器主要有两种最具代表性的配电方式:屏栅极电源正端分别连接阳极电源正、负端的配电方式。为了研究配电方式对Kaufman离子推力器工作性能的影响,基于等离子体理论和推力器工作原理,分析两种主要配电方式下放电室电极电势及电流平衡关系,推导了放电室等离子体特性表达式,理论分析了配电方式对离子推力器多种性能参数的影响。结合兰州空间技术物理研究所自研的LIPS300离子推力器在两种配电方式下工作在3kW和5kW的性能试验,通过解析方法对离子推力器多种工作参数和性能参数进行分析,试验结果与理论分析结果具有良好的一致性。研究表明:采用屏栅极电源正端连接阳极电源负端的配电方式能够获得更大的推力和比冲,并能提高离子对栅极透明度,减少离子对屏栅极的溅射,从而提高栅极寿命,但束离子产生成本稍高。研究结果可为离子推力器配电方式的设计与优化提供依据。  相似文献   

18.
以研究氪气替代氙气作为霍尔推力器工质时,等离子体束发散程度大等束聚焦特性问题为目的,通过以霍尔推力器磁场参数、放电电压和阳极工质流量分别作为单一变量进行实验研究,考察其对推力器等离子体束聚焦影响情况。使用HET-P70霍尔推力器进行相关实验,通过改变磁场参数来研究磁场位形对氪气工质推力器性能的影响,最终发现合适磁场位形形成的磁聚焦状态,即实验一中的工况3,可以使羽流发散角达到11.5°,此时推力器放电电压在400V,阳极工质流量3mg/s。另外,通过实验二和实验三,考察阳极工质流量和放电电压对氪等离子体束聚焦的影响机理,发现两个放电参数的变化主要改变了中性气体主电离区位置,进而影响等离子体束聚焦状态。电离位置在设定工况下外移9%,会使得羽流发散半角增大约12°。所以,磁场位形和中性气体的电离位置是影响氪等离子体束聚焦的重要因素,在对氪气霍尔推力器进行设计优化时应予重点考虑。  相似文献   

19.
为了研究5kW离子推力器功率宽范围工作能力,采用试验的方法得到阳极电流和屏栅电压与其性能的影响关系。研究结果表明:离子束流随阳极电流增大呈线性增大。当屏栅电压增加时,推力器离子束流先增加然后趋于稳定,加速栅电流单调减小。推力随功率增大呈线性增长,比冲随功率的增大呈非线性增长,在功率308W~4813W下实现了推力12mN~184mN,比冲1817s~3538s, 效率34%~67%的宽范围调节。同时推力器效率随功率增大逐渐增大,并在2902W时存在明显拐点,在实际在轨应用中要根据任务需求确定最佳工作区间提高推力器性能和效率。  相似文献   

20.
基于纳米铝热剂的MEMS固体微推力器点火实验研究   总被引:1,自引:1,他引:0       下载免费PDF全文
MEMS固体微推力器可以形成单元数量巨大的微推力器阵列,适合低成本微、纳卫星系统,是极具潜力的新型卫星推力器。为研究基于纳米铝热剂的MEMS推力器工作特性,开展了大气和真空点火实验。大气下的燃烧羽流与空气进一步燃烧,导致羽流的发光持续时间约数ms,远大于真空试验,过估了在真空条件下的推力器作用时间。真空试验获得了动态推力特征和有效工作时间(约250μs),估算推力器的冲量约55μN·s~80μN·s。羽流影响范围的直径约为30mm、流向约70mm,羽流颗粒的运动速度约132m/s。测试结果显示,底部点火先将推进剂挤出喷孔,而后在外部燃烧和爆炸。羽流形貌有两种特征:一种是剧烈爆炸,产生蘑菇云状气体产物;而另一种未产生气状产物。前者的冲量和有效工作时间大于后者。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号