共查询到20条相似文献,搜索用时 0 毫秒
1.
鉴于重复使用运载器对动力系统的技术需求,以我国新一代运载火箭主动力液氧煤油高压补燃循环发动机为研究对象,建立了多参数、非线性以及强耦合的发动机系统仿真平台。在分析国内外变推力液体火箭发动机技术特点的基础上,根据液氧煤油发动机单路推力调节的仿真结果,首次提出了发生器燃料路流量调节器调节、主涡轮前燃气分流以及氧化剂主路节流等相结合,并辅助以气体乳化提高喷注器压降的组合深度推力调节方案。仿真结果表明:发动机推力调节能力可达10:1,且能实现多次点火起动,具有性能高、调节范围大的优点。 相似文献
2.
为了搭建更加精确的离心泵汽蚀工况的性能预测模型,将汽蚀工况下的泵内流动分为入口段和出口段分别计算流量,以两段流量之差确定泵内空泡体积,进而确定汽蚀的扬程相对降低系数。通过5种型号泵的仿真结果与水试结果对比验证了该建模方法的通用性和准确性,最大计算偏差出现在第二临界点附近,约为1%;针对热试中汽蚀故障进行仿真复现,和热试结果对比验证了该故障建模方法的有效性。在此基础上开展了补燃循环液氧煤油发动机氧化剂泵汽蚀故障的注入与仿真,结果表明:预压泵入口压力降低能够导致氧化剂泵汽蚀;汽蚀工况下,氧化剂主泵扬程降低、流量减少并且转速升高;进而导致燃气发生器混合比趋向当量比、温度升高,与理论分析和试车以及发射中故障结果相吻合。最低允许预压泵入口压力为53%额定入口压力,继续降低压力会导致燃气发生器温度超过临界温度,存在产生毁灭性后果的危险。 相似文献
3.
随着发动机推力的增大,燃烧室直径也随之增大,表征燃烧室热声学特性的振型、频率及其组合振型更为复杂,燃烧室带与不带抗脉动隔板以及隔板的结构参数等对声学特性影响明显,直接影响燃烧不稳定性的裕度。为了研究抗脉动隔板结构参数对燃烧室声学特性的影响,本文基于三维柱坐标系声波动理论和COMSOL仿真平台,研究了抗脉动隔板结构对火箭发动机燃烧室声学特性的影响。通过单喷嘴声学模拟实验,验证了该仿真方法的有效性。分析了隔板高度、厚度和冷区长度对燃烧室声学特性的影响规律。研究结果表明:隔板高度由40mm增加至120mm时,燃烧室一阶切向和二阶切向振型的频率分别下降了22%和31%;隔板厚度和冷区长度对燃烧室声学频率的影响不超过5%;大推力补燃发动机燃烧室直径大,需采用结构形式更为复杂的抗脉动隔板来针对性地抑制横向振型。 相似文献
4.
电动泵压式液氧煤油变推力火箭发动机动力学建模与仿真分析:Part Ⅰ-单点工况分析 总被引:1,自引:0,他引:1
为了解决电动泵压式液氧煤油变推力火箭发动机系统响应特性不明晰的问题,综合考虑了电池、电机及冷却通道的影响,建立了电动泵压式液氧煤油变推力火箭发动机仿真平台,深入研究了不同工况下系统响应特性以及系统性能参数随推力水平的变化规律。研究结果表明:系统性能参数响应存在短板效应,尽管电动泵响应速度快,而冷却通道参数响应速度慢,导致系统性能参数响应时间是电动泵转速响应时间的10倍以上;此外,低推力工况时,适当降低混合比,能够保证冷却通道出口亚临界情况下的顺利调节。因此,为了提高系统响应特性,在满足冷却压降要求时,应尽可能提高冷却通道内冷却剂流速。 相似文献
5.
6.
解惠贞%崔红%郝志彪%李瑞珍%段建军 《宇航材料工艺》2006,36(5):34-39
通过预制体、复合工艺路线及参数的选择,进行了高压补燃液氧/煤油发动机涡轮泵用高性能C/C密封材料的研制,分析了预制体、复合工艺对材料性能的影响.结果表明,以针刺无纬布为预制体,进行CVD碳、树脂碳和沥青碳致密,最高热处理温度为2 500℃,最终进行封孔处理所制备的C/C复合材料综合性能良好,其密度为1.92g/cm^3,开孔率0.06%,轴向压缩强度232 MPa,轴向弯曲强度158 MPa,肖氏硬度为77.该密封材料构件成功通过液氧/煤油发动机热试车考核,显示出了在该领域的应用前景. 相似文献
7.
我国新一代载人火箭液氧煤油发动机 总被引:4,自引:0,他引:4
分析了国内外载人火箭主动力的发展情况与发展趋势,介绍了我国1200 kN和180 kN两型液氧煤油发动机的研制历程、系统组成、工作原理、性能参数、关键技术和应用情况。两型发动机突破了补燃循环、自身起动、大范围工况调节、高效稳定燃烧、高压推力室冷却、反力式涡轮、大范围轴向力平衡、低温高DN值轴承、组合式涡轮泵密封、大直径低温阀、高精度调节器、推力矢量控制等关键技术。目前,两型发动机研制工作已基本完成,将成为我国新一代载人火箭的动力组合,实现我国航天主动力的更新换代。 相似文献
8.
9.
为了研究复燃对液氧煤油发动机尾焰冲击特性的影响,建立了液氧煤油发动机尾焰冲击数值计算模型,并基于模型研究了喷管出口距离平板3m,5m两种工况下复燃对尾焰冲击特性的影响。结果表明:模型考虑了发动机内部燃烧对尾焰冲击特性的影响,计算得到了主射流区的激波结构;复燃增大了尾焰自由射流区和壁面射流区的高温区域,改变了自由射流区和滞止区的形状结构;平板壁面压力随着径向距离增大而逐渐减小,并且3m工况时在1.8m和2.5m处分别出现2.5倍环境压力和1.5倍环境压力的波动,5m工况时在2m处出现1.5~2倍环境压力的波动,在波动之后平板壁面上压力很快降为环境压力,复燃对5m工况的波动较3m工况影响大。 相似文献
10.
采用自然语言处理技术提取文档特征,运用规则知识库与神经网络模型,在对液氧煤油发动机技术原有文件资料人工知识分类标记的基础上,实现新增技术成果所属的专业分类、知识分类、专业技术分类、关键技术分类等维度的自动分类标记,形成智能化、常态化知识资源自动积累机制,能够保障液氧煤油发动机文件资料的分类积累,为设计创新提供借鉴和参考。 相似文献
11.
12.
电动泵压式液体火箭发动机受到了广泛的关注,然而电池有限的输出功率和过于沉重的质量成为限制电动泵压式发动机发展的重要因素。为此本文提出了一种电机驱动燃料泵和涡轮驱动氧泵的电动膨胀循环液体火箭发动机方案,并着重研究了该型发动机的动态响应特性。首先给出了20 kN级电动膨胀循环发动机的技术指标和部组件参数,进一步基于AMESim平台建立了全系统动力学模型,验证了方案的可行性和部组件动力学模型的准确性,并深入研究了单点工况和调节工况的动态响应特性。结果表明,针对启动过程而言,涡轮泵调整时间较电动泵长,这降低了系统响应速度,但工况越高,系统响应速度越快;高工况启动时,甲烷在冷却通道内的剧烈相变和跨临界状态的不连续物性相互耦合易引发系统振荡;就调节过程而言,推力调节时普遍存在超调或凹坑现象,且系统在两相同工况之间调节时,正调响应速度快于负调,这也导致阶跃幅值相等条件下的系统调整时间随目标工况升高而缩短。 相似文献
13.
14.
为探究宽工况范围下螺旋槽再生冷却的传热特性,基于微小通道内低温工质的相变传热模型,采用一维传热计算方法,对5 kN级液氧甲烷变推力发动机开展了螺旋槽再生冷却传热特性研究。结果表明:本文所采用的传热计算模型可用于传热预估,与试验结果相比,冷却剂温升误差为4.3%,压降误差为1.1%,喉部处外壁温误差为-11%,在工程计算可接受范围内;相比于直槽,螺旋槽再生冷却能有效降低燃气侧壁温,同时,在宽范围变推力条件下,实际功率水平越低,冷却剂温升、压降越小,喉部燃气侧壁温越低,但“传热恶化区”内的壁温最大值反而越高,当发动机推力由额定工况的75%调整至20%时,燃气侧壁温的最大值由1 351 K增大至1 399 K;综合考虑壁面温度及冷却剂的压力损失,本文对冷却通道开展优化设计,对比四种冷却通道方案的传热性能,其中,方案4为最优方案,20%额定功率水平工况时,冷却剂温升为491 K,压降为0.34 MPa,燃气侧壁温最大值也仅为1 297 K,较初始设计方案降低了102 K,远低于材料的极限温度。 相似文献
15.
16.
以某型液氧 煤油高压补燃火箭发动机为模型,利用随机仿真(蒙特卡罗仿真)的方法,研究在主要结构参数和发动机入口参数随机变化时发动机稳态参数的分布规律。通过对该发动机非线性稳态特性方程组进行大量的仿真计算并对结果进行统计推断,获得了发动机稳态参数的概率密度分布特性。考虑的随机变化因素包括:系统结构参数与组件性能参数变化、推进剂供应系统入口压力变化和环境温度变化等。 相似文献
17.
为了研究液氧煤油在高混合比下的燃烧特性,在模拟燃烧室中开展了液氧煤油在超临界压力环境下的富氧燃烧实验,燃烧室中采用了双离心喷嘴。实验过程中燃烧室压力额定值为6.4MPa,高于液氧和煤油的超临界压力。燃烧室直径为50mm,燃烧室长度约为345mm,燃烧室喉部直径10.5mm。用压力传感器记录液氧喷前压力、煤油喷前压力和燃烧室压力,压力数据的采样频率为2kHz。实验中发现:当混合比为10时,液氧煤油发生较为稳定的燃烧;当混合比为14.5时,燃烧室内出现了20~30Hz的低频燃烧振荡;在燃烧的启动和关机阶段,也出现了相近频率的低频燃烧振荡。液氧和煤油的喷前压力振荡相位均滞后于燃烧室压力振荡,表明振荡的源头在燃烧室。系统幅频特性分析结果表明,燃烧振荡频率与系统频率不耦合。液氧煤油低频燃烧振荡的主要诱发因素可能是高混合比燃烧下的温度效应。富氧燃烧温度低于2200K易诱发低频燃烧不稳定。 相似文献
18.
对液体火箭发动机推力和混合比的大范围非线性调整,提出了分级迭代直接求解高维非线性方程组的计算方法,并对液氧/煤油补燃循环火箭发动机的典型调整方案进行了计算分析,得到了考虑作为冷却剂的燃料温升、主涡轮入口燃气温度、主涡轮泵转速、发动机真空比冲以及燃气发生器喷注器压降和主燃烧室喷注器压降约束下发动机推力和混合比的最大可调域。 相似文献
19.
阐述了液氧/煤油液体火箭发动机故障诊断的基本原理与方法,以及故障诊断系统的组成,说明了液氧/煤油火箭发动机故障诊断系统需要考虑的几个问题,并简要介绍了监控系统的组成与原理。 相似文献