首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
脉动来流对涡轮非定常气动性能影响机理   总被引:1,自引:0,他引:1  
以周期性脉动来流模拟旋转爆震燃烧室出口流场,研究了来流脉动幅值和频率对GE-E3高压涡轮级非定常内流特性的影响机理。结果表明:来流脉动幅值的增加会加强涡轮内部流场的非定常性,放大流场参数的时空差异;随着脉动频率的增加,涡轮内部流场的脉动幅值逐渐减弱,不同动叶时均载荷分布趋于一致。在来流脉动频率为5 244 Hz的条件下,来流脉动系数逐步增加到04时,涡轮效率降低1399%;而在来流脉动系数为03的条件下,来流脉动频率逐步增加到10 488 Hz时,涡轮效率降低1557%。来流脉动幅值和频率的增加会加剧端壁二次流动和叶栅流动分离,并使得动叶进气攻角偏离设计状态,降低涡轮的工作效率。  相似文献   

2.
叶片前缘形状对涡轮气动性能的影响   总被引:4,自引:0,他引:4  
采用Bezier曲线控制涡轮叶片前缘形状由圆弧形改为非圆弧形,用数值计算方法研究涡轮叶片前缘形状对其气动性能影响.首先以基元叶型为研究基础,数值模拟分析、比较不同基元叶型前缘形状在不同攻角下对涡轮叶栅性能影响.对于正常运行的攻角范围(-15°~+10°),由于非圆弧形前缘表面曲率半径增大较缓,减小了前缘表面流动的法向压力梯度,抑制过度膨胀,减小由摩擦力引起的能量耗散,损失减小,且非圆弧形曲率半径越大,提高性能效果相对越好.而在非设计工况的大攻角条件下,前缘曲率半径缓慢增大将导致叶型分离更严重,损失相对增加.其次以某5级低压涡轮作为验证实例,数值研究分析认为,非圆弧形前缘形状可改善叶片前缘流动特性,提高涡轮效率,但对于远离设计点的非设计工况,由于气流攻角的大幅度改变,会带来涡轮气动性能的负面影响.   相似文献   

3.
常骐越  赵巍  雒伟伟  唐菲 《推进技术》2017,38(7):1483-1490
为阐明1+1对转涡轮变工况性能损失的主要来源并提出改进方法,以1+1对转涡轮为例进行了部分载荷工况下的流场模拟、分析和优化。与相同设计参数的同转涡轮进行部分载荷工况流场对比,发现部分转速下同转涡轮在级间导叶吸力面前缘出现分离,而1+1对转涡轮在压力面前缘出现分离。针对此流动损失,为1+1对转涡轮级间导叶提出了一种基于分离角的压力面优化设计方法,提高了近前缘压力面的气流速度,增强了其对负攻角的适应性,基本消除了叶片14%、58%和92%叶高处压力面前缘的流动分离,在正攻角工况下亦保持了良好气动性能。数值验证了该涡轮的效率在全工况范围内明显提高,而设计点效率未受负面影响。其中,在对转涡轮70%和50%设计转速的两个工况点上,低压涡轮效率较优化前分别提升了1.5%和2.0%,涡轮总效率较优化前分别提升了0.5%和0.7%。  相似文献   

4.
变工况下超高负荷低压涡轮叶片边界层被动控制   总被引:3,自引:1,他引:3  
张波  李伟  卢新根  朱俊强 《航空动力学报》2012,27(12):2805-2813
以某超高负荷低压涡轮叶型为研究对象,利用数值模拟的方法通过改变来流雷诺数、自由来流湍流强度和攻角等工况,研究了其对叶片边界层特性的影响,并通过在叶片吸力面加凹槽、矩形拌线、圆形拌线等被动控制方式来改善叶型性能,结果表明:随着雷诺数的增大叶型损失逐渐降低;随着自由来流湍流强度的增加叶型损失先减小后增大;随着攻角向负攻角方向变大叶型损失先减小后增大,向正攻角方向变大时叶型损失迅速增大;在雷诺数和湍流强度变化时表面凹槽的控制方式较好,而攻角变化时加矩形拌线和圆形拌线的控制方式较好.3种被动控制方式促发转捩提前发生抑制分离泡,但都会引起湍流湿面积的增加.   相似文献   

5.
吴中野  方祥军 《推进技术》2018,39(2):269-276
为了探索变几何涡轮气动设计方案,导向器与动叶均采用厚前缘与后加载型叶片设计以及动叶进口负攻角设计。为了提高涡轮输出功,低压涡轮采用了大流道扩张角设计。应用数值方法对此设计涡轮进行了不同导向器开度以及有无导向器端壁径向间隙的涡轮气动性能与流场结构特性研究,并对大流道扩张角的导向器端壁径向间隙变化进行了理论分析。结果表明在设计点工况下,基本涡轮效率为0.903,相对折合流量为1.006,满足设计需求;大流道扩张角下,导向器端壁径向间隙对涡轮性能影响很大;在设计工况下,随着导向器开度的逐渐关小,涡轮主要气动参数反力度降低,通流流量下降,而效率变化相对较小,有利于调节发动机工作状态。在非设计工况下,涡轮效率随膨胀比变化亦相对较小。可见此设计变几何涡轮给发动机带来较大收益。  相似文献   

6.
液体火箭发动机反力式涡轮动叶进口攻角的研究   总被引:1,自引:0,他引:1       下载免费PDF全文
张国舟  俞南嘉  魏沫 《推进技术》2002,23(5):383-386
针对高性能分级燃烧(闭式)循环液体火箭发动机用反力式涡轮的特点,对所设计的动叶叶栅S1流面的准三元流气动分析和已有动叶平面叶栅的亚声速风洞试验,研究了反力式涡轮动叶玻负攻角对叶栅内的绕流和能量损失的影响。结果表明:对于给定的来流方向,为得到连续收敛的叶栅几何通道和小的能量损失,动叶应采用正攻角设计,对已有的连续收敛的动叶叶栅,应采用负攻角流入工况,能量损失小。  相似文献   

7.
查小晖  郑群  高杰  王威  于雷  刘鹏 《推进技术》2014,35(6):779-787
采用商用计算流体力学软件CFX,湍流模型采用标准k-w两方程湍流模型,叶型为单涡轮动叶叶片,应用数值模拟方法研究了弧形端壁造型对动叶泄漏流动及涡轮气动性能的影响。数值研究结果表明:适当优化的弧形端壁造型可以改善泄漏涡和通道涡作用状况、提高出口总压和改善气流角分布、降低叶顶间隙泄漏和提高效率。最优端壁造型可以减少间隙泄漏0.27%,提高效率0.77%。在变攻角下,最优端壁造型效率最高点出现在设计攻角下,但攻角变化越大,间隙泄漏流动越少。  相似文献   

8.
为了满足某高超声速涡轮发动机巡航工况(Ma=3.2)性能要求,在某8级轴流压气机方案基础上,针对压气机在该工况对应转速(相对换算转速0.748)下流通能力不足问题进行设计优化。通过创建多级压气机1维分析设计平台,采用试验设计方法分析并确定了对压气机低转速性能影响较大的关键参数,基于模拟退火寻优算法完成对多级压气机气动布局的重构;通过采用宽范围低损失多段圆弧中弧线设计、高流通转子叶型设计、低转速可调静子安装角优化及各级攻角匹配优化等措施,完成了8级压气机方案的改进设计。结果表明:在巡航工况(Ma=3.2)下,8级压气机效率和喘振裕度分别提高了0.7%和17.4%,验证了多级压气机设计优化方法的有效性,可为高超声速涡轮发动机压缩部件设计和研究提供参考。  相似文献   

9.
导叶冷却对涡轮级性能影响的数值研究   总被引:1,自引:1,他引:1  
针对某高压燃气三维扭转涡轮导叶全叶身冷气射流进行了数值模拟,详细分析了在设计转速下改变冷气流量对叶片气动性能、冷却效率和叶栅通道损失的影响;对比分析了在冷气流量相同的条件下,改变转速对涡轮级性能影响.结果表明:不同冷气流量对导叶冷却孔附近区域的静压影响较为明显,而对下游转子的型面静压影响不大;导叶冷气射流对叶栅通道内主流气流角影响较小;冷气流量占主流流量由2.50%增加至6.25%,叶片绝热壁温降幅达11.19%,导叶叶栅通道总压损失和能量损失分别增加了12.95%和12.01%,而涡轮级功率和级效率分别降低了2.39%和1.51%.   相似文献   

10.
超声速涡轮叶型全局气动优化设计   总被引:1,自引:1,他引:0       下载免费PDF全文
李志  刘艳  杨金广  徐乐  张敏 《推进技术》2019,40(5):1051-1057
针对涡轮叶型全局优化设计计算时间长、样本空间大等难点提出一种可行的优化设计方法,该方法将控制叶型的17个参数作为优化变量,采用第二代多目标遗传算法进行全局自动寻优。基于此方法,搭建了涡轮叶型全局优化设计平台。利用此平台,分别采用轴向稠度固定和自由优化两种方式对超声速涡轮叶型进行了优化设计。数值计算结果表明,两组优化设计叶型在设计工况下总压损失系数比参考叶型分别低19.5%和10.0%,流道中的激波强度更弱,且在变工况条件下都具有较好的气动性能。深入分析流场与激波结构后发现,外尾激波相比于内尾激波对总损失的影响更大,通过减小气流膨胀转折角或内尾激波气流转折角能够有效削弱外尾激波强度。  相似文献   

11.
叶冠齿数和齿顶间隙对涡轮气动性能的影响   总被引:1,自引:0,他引:1  
通过数值方法对某1.5级带冠涡轮的流场进行研究,对比分析了不同叶冠齿数和齿顶间隙对涡轮气动性能的影响.研究结果表明,泄漏流与主流掺混后形成一个涡流区,改变了叶栅上半通道的流场结构,使得顶部流体以负攻角进入下级静叶,造成攻角损失,改变了下级静叶的气动性能.同时发现间隙相对于齿数对涡轮气动性能的影响程度更为显著,间隙相同,齿数从1增加到4时,涡轮效率增加0.75%;齿数相同,间隙从2mm减小到0.5mm时,涡轮效率增加1.82%.  相似文献   

12.
刘菁  单鹏 《航空动力学报》2008,23(6):1047-1053
对某高负荷低速较大扭矩单级冷气起动涡轮进行了原型机气动分析和改型机气动设计.该涡轮采用离心式流动,分立式导向器和冲击式转子.分析发现,该涡轮负荷系数极高而不追求高效率.为增大功率而进行的改型设计采取了加大流量而保持进气压强不变的技术方案.流场模拟结果显示,该改型设计在涡轮转子直径减小6%的情况下,在原型涡轮设计转速下及其140%转速下的输出功率各约为原型机的2倍和2.8倍.   相似文献   

13.
高压级涡轮非轴对称端壁造型数值研究   总被引:1,自引:0,他引:1  
非轴对称端壁造型在叶轮机械的设计中得到了越来越多的重视.本文以某高压涡轮为研究对象,通过对端壁面上凸、端壁面下凹和轴对称端壁流场的数值模拟,分析了非轴对称端壁造型对涡轮性能的影响,探讨了非轴对称端壁造型降低流场二次流流动损失的机理.结果表明:采用非轴对称上凸端壁可提高涡轮气动效率0.57%,而采用非轴对称下凹端壁则导致效率下降0.56%,合理使用非轴对称端壁造型技术可有效降低二次流流动损失并提高涡轮气动性能.  相似文献   

14.
针对涡轮进口导向叶片进口马赫数低、前部负荷小的特点,采用前缘截断思路构建了高负荷涡轮叶型,并采用Pritchard 11参数法进行重构设计。采用数值计算和平面叶栅试验开展了研究和分析。结果表明:高负荷叶型吸力面前缘马赫数显著提升,增加了叶片前部负荷。喉部峰值马赫数基本不变,但位置前移,负荷分布均匀性提高。叶型的马赫数特性和攻角特性表明,高负荷叶型在不同攻角和马赫数下,均能获得较低的总压损失,其中在设计马赫数,叶型负荷提升1倍的情况下,总压损失系数降低259%。   相似文献   

15.
高压涡轮导叶非轴对称端壁优化设计   总被引:2,自引:0,他引:2       下载免费PDF全文
为使高压涡轮导叶非轴对称端壁造型在减少二次流损失、提高气动性能方面更好的发挥作用,以某一级高压涡轮为研究对象,采用端壁参数化造型、三维Navier-Stokes(N-S)方程流场求解和基于人工神经网络的遗传算法相结合的优化方法对涡轮导叶进行非轴对称端壁的优化设计。优化目标为在控制涡轮导叶进口质量流量、出口马赫数及出口气流角的情况下,导叶出口总压损失系数和出口二次流动能最小化。对比分析优化前后端壁对涡轮导叶出口参数和涡轮级性能的影响。结果表明:优化后得到的非轴对称端壁有效地改善了涡轮导叶通道内的流场,抑制了通道内二次流涡系的发展,降低了导叶出口处的流动损失,涡轮导叶出口总压损失系数降低了14.85%,高压涡轮级等熵效率提高了0.456%。  相似文献   

16.
自由涡轮是航空发动机的关键部件,其工作环境非常恶劣,承受着离心载荷、热载荷、气动载荷及振动载荷等的复合作用。利用UG软件对某型自由涡轮2级涡轮轮盘/叶片进行3维实体建模,导入ANSYS构建其耦合振动分析的有限元模型,以静强度分析中的模型为基础,考虑温度场和离心载荷的影响,计算出涡轮叶片/轮盘不同转速下的动频。从Campbell图可见,涡轮叶片/轮盘在工作转速下没有发生共振的危险,该型涡轮设计合理。  相似文献   

17.
大涵道比发动机多级低压涡轮气动设计   总被引:2,自引:0,他引:2       下载免费PDF全文
陈云  王雷  王刚 《航空发动机》2013,39(4):51-55
基于大涵道比航空发动机多级低压涡轮设计研究,分析了大涵道比发动机多级低压涡轮气动设计特点和主要设计参数的设计选取原则以及发展趋势,研究了过渡流道设计参数的选取标准、过渡流道优化设计方法以及对多级低压涡轮子午流道设计与功率分配方法,综合分析了多级低压涡轮功率分配需要考虑的各项因素,并探讨了高升力涡轮叶型设计方法。研究表明:过渡流道方案设计可以采用长高比及当量扩张角作为初步选取标准;多级低压涡轮功率分配要综合考虑不同工况性能及气动设计参数;完成设计的大转折角后加载叶型能够有效地控制涡轮叶栅内的流动损失。  相似文献   

18.
为了提高微型涡喷发动机综合性能,对其单级向心涡轮导向器进行改进设计。改进设计中,采用发动机性能试验摸底导向器物理喉部面积,全三维气动手段优化叶片型线方法,提高涡轮级气动性能。数值计算得出:在近设计点处,涡轮级流量增加约12.5%,效率提升约2.5%。发动机性能试验表明:在设计转速下,推力增幅达21.7%,燃油耗油率降低12%。改进设计的涡轮导向器性能满足发动机总体要求。  相似文献   

19.
针对固体燃料空气涡轮火箭发动机(SP-ATR)的工作特点,提出了双燃气发生器的加力工作模式,并根据总体性能要求确定了部件的工作参数。主要采用数值模拟和实验研究相结合的手段,分别针对压气机和涡轮部件开展了气动设计和增压装置集成,获得了工作特性,并完成了增压系统工作特性的冷流实验验证。开展了考虑涡轮后低温旋流条件下多股气流的高效掺混燃烧研究,通过研究涡轮转速、空气入射角度、补燃室富燃燃气流量和富燃燃气射流位置对燃烧效率的影响,确定了原理样机和关键部件的恰当形式和布局方式。最终开展了原理样机的地面热试实验,验证了双燃气发生器的SPATR发动机的工作原理,热试实验结果表明燃气涡轮增压装置工作可靠,性能满足设计要求,其中压气机压比达到了3.3,转速为82kr/min,补燃室燃烧效率为85.21%。  相似文献   

20.
尾缘厚度对低压涡轮气动性能影响的数值模拟   总被引:1,自引:0,他引:1  
采用数值模拟的方法研究了尾缘厚度对Pak-B低压涡轮气动性能的影响.目的是通过增加尾缘厚度来控制边界层分离,降低损失,揭示增加尾缘厚度的流动控制机理.研究发现:适当增加尾缘厚度能减小低压涡轮损失,增大折转角.在雷诺数为25000,来流湍流度为1%时,适当增加尾缘厚度能使基于进口速度的能量损失系数降低10.4%,折转角增加1.73%.适当增加尾缘厚度和栅距同样可以使基于进口速度的能量损失系数减小,折转角增大.在雷诺数为25000,来流湍流度为1%时,尾缘厚度增加到4%s,栅距增加了2.2%,可以使基于进口速度的能量损失系数减小7.4%,折转角增加1.25%.通过增加尾缘厚度可以发展低稠度高负荷低压涡轮叶栅.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号