首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
固体火箭发动机喷管喉部凝相颗粒粒度分布实验   总被引:1,自引:1,他引:1  
设计了一种新的收集固体火箭发动机喷管凝相颗粒的实验装置,针对典型的HTPB复合推进剂,开展了喷管喉部凝相颗粒的收集实验和粒度分析,研究了燃烧室压强和收敛角度对喷管喉部颗粒粒度分布的影响规律。研究结果表明,喷管喉部的凝相颗粒在0.27~50μm之间都有颗粒存在,凝相颗粒主要集中在0.3~15μm之间,粒径大于15μm的颗粒较少;燃烧室压强对颗粒粒径有较大影响,随着燃烧室压强的升高,凝相颗粒粒径变小,粒度分布更为集中;燃烧室压强相同的条件下,收敛角度对喷管喉部的凝相颗粒粒度分布影响较小。  相似文献   

2.
单组元脉冲推力器挤压和排气过程分析   总被引:2,自引:1,他引:1       下载免费PDF全文
高室压脉冲推力器使用可移动的喷注器,能够得到比供给压强高得多的燃烧室压强。为了分析其工作特性,建立了单组元脉冲推力器挤压和排气过程的数学模型,以硝酸羟铵(HAN)基单组元推进剂为例,采用四阶龙格-库塔法进行了求解。结果表明,燃烧室最大压强和平均压强都大于推进剂入口压强,而燃烧室内近似等容的燃烧过程是压强升高的原因。与所用推进剂、平均推力和面积比都相同的常规推力器相比较表明,脉冲推力器的真空比冲提高5 s,而喷管喉部面积减小89%,若两者喷管出口面积相同,则脉冲推力器的比冲将提高31.5%。  相似文献   

3.
为了准确预示固体火箭发动机碳基材料喷管的烧蚀率,依据热化学烧蚀理论,建立了喷管传热烧蚀的二维轴对称气-固-热耦合计算模型,计算通过FLUENT壁面化学反应模型完成,无需事先假设烧蚀控制机制。针对70-lb BATES发动机喷管进行了烧蚀计算,研究了推进剂配方、氧化性组分、燃烧室压强对喷管烧蚀的影响。结果表明:烧蚀率计算值与试验测试值吻合较好;烧蚀率分布遵循喷管内壁热流密度分布规律,在喉部上游入口处达到峰值;烧蚀率随推进剂Al含量增加而降低,随燃烧室压强升高而近似正比例增大;H2O是决定烧蚀的主要氧化性组分。  相似文献   

4.
双组元高室压脉冲火箭发动机工作特性分析   总被引:2,自引:1,他引:1  
为了研究高室压脉冲火箭发动机的工作特性,在分析其工作原理的基础上建立了数学模型,其中燃烧室和挤压腔采用零维模型,喷管采用一维准稳态模型,采用四阶Runge-Kutta法进行了求解.结果表明,燃烧室的最大压强和平均压强都高于推进剂供给压强,而挤压过程中进出燃烧室的质量不守恒是压强升高的原因.与常规液体火箭发动机相比较表明,脉冲火箭发动机的真空比冲提高了7.5%,而喉部面积仅为其10.2%.  相似文献   

5.
声学扰动对燃烧室声学特性的影响研究   总被引:1,自引:2,他引:1       下载免费PDF全文
薛帅杰  洪流  杨伟东 《推进技术》2016,37(2):201-208
针对利用旋转齿轮对燃烧过程施加高频声学扰动的方法,为获得其对同轴离心喷嘴燃烧室声学特性的影响,设计了一种带辅喷管的单喷嘴扁平燃烧室,分别在冷试和热试工况下研究了旋转齿轮声学扰动装置对燃烧室声学特性的影响。冷试中当扰动频率等于燃烧室某振型的特征频率时燃烧室内出现驻波特征振荡。热试重点关注了煤油蒸气/富氧空气燃烧过程对声学扰动的响应,改变扰动装置的位置可改变声压波节线的方向,实现推进剂喷入位置为声压波腹或声压波节。研究表明,一阶切向声学振荡对同轴离心喷嘴与声压波腹的相对位置敏感,煤油蒸气/富氧空气燃烧过程易受声压波动的影响,推测液氧煤油补燃循环发动机内的高频燃烧不稳定性可能易被声压波动激发。  相似文献   

6.
固体火箭发动机碳基材料喷管机械侵蚀特性   总被引:1,自引:2,他引:1  
为研究碳基材料喷管的机械侵蚀特性,基于两相流理论和经验公式,考虑液滴的蒸发与反应,建立了二维轴对称碳基材料喷管机械侵蚀计算模型.针对15-lb BATES发动机喷管进行了机械侵蚀计算,研究了液滴轨迹、机械侵蚀情况的分布规律,以及推进剂中Al质量分数和燃烧室压强对机械侵蚀的影响.结果表明:机械侵蚀率计算最大值为55μm/s,在实验结果范围内.Al/Al2O3混合液滴是机械侵蚀的主要因素,Al液滴由于蒸发氧化而不对壁面造成碰撞.机械侵蚀发生在喷管收敛段,峰值位于喉部上游入口处,喉部和扩张段无机械侵蚀现象.推进剂中Al质量分数增加对机械侵蚀率无显著规律性影响.机械侵蚀率随燃烧室压强的增加呈超线性增长.   相似文献   

7.
小推力长时间工作固体火箭发动机C/C喉衬的烧蚀与沉积   总被引:3,自引:3,他引:0  
针对C/C喉衬喷管小推力长时间工作固体火箭发动机,分别开展了含铝、不含铝两种推进剂状态的地面试验。根据燃烧室压强及发动机推力测试曲线计算了喷管喉径的瞬变值,对比研究了喉衬的烧蚀、沉积过程,指出含铝推进剂发动机C/C喉衬先后经历初始沉积、沉积消融、持续烧蚀、烧蚀与沉积交替四个阶段,而推进剂不含铝时则没有明显的初始沉积与沉积消融。讨论了推进剂配方、燃烧室压强、喷管结构等因素对喉衬烧蚀、沉积的影响,并提出了相应的改善措施。  相似文献   

8.
本文介绍一个反向喷管推力终止的冷模拟实验.实验表明,突然打开固体火箭发动机反向喷管后,燃烧室中可能出现强烈的压力冲击,这种压力冲击来自喷管喉部节流和形成准稳态流动之前的非定常过程.本文对这一效应做了估算.用特征线法及激波拟合法进行了一维非定常流动的数值分析.预估的压力-时间曲线与实验结果相当一致.  相似文献   

9.
为探索燃气温度与燃烧室工作压强对固体火箭发动机喷管阻尼特性的影响,同时为了对冷流试验的改进及不稳定燃烧研究提供相应的理论指导,基于Buffum冷流试验发动机的二维模型,利用脉冲衰减法,开展喷管阻尼特性数值仿真计算。结果分析表明燃气温度对喷管阻尼有很大影响,而燃烧室工作压强对其几乎没有影响。燃气温度越高,切断脉冲后,压力振荡衰减越快,即喷管阻尼衰减系数越大;不同工作压强下,切断脉冲后,压力振荡衰减速度几乎不变,即发动机喷管阻尼衰减常数几乎不变。  相似文献   

10.
喷管摆动可能会诱发燃烧不稳定性,而不稳定性问题已经受到了国内外研究人员的高度重视。为了研究喷管摆动角度和频率对燃烧室内压力振荡响应的影响,采用数值模拟方法,在给定某时刻装药燃面、喉径和正弦摆动方式下,对不同摆角和摆频下的发动机燃烧室压强变化规律及喷管摆动过程的响应规律进行数值分析。研究表明:固定摆动频率,改变摆动角度,燃烧室内平均压力都随时间小幅度上升,摆动角度为3°和7°时,平均压强增量较其它角度而言较为明显;固定摆动角度,随着摆动频率的增加,喷管摆动引起燃烧室内低频响应幅值在增加;由喷管摆动所引起的燃烧室压力振荡频率主要集中在100Hz以下的低频区。  相似文献   

11.
为了解针栓式固体发动机的动态响应特性,基于可变等效喉部面积的调控内弹道模型,研究了针栓型面及其调节过程对发动机动态响应的影响。结果表明:针栓式变推力固体发动机响应时间以及推力响应的动态特性与针栓移动速度、针栓型面以及推进剂压力指数密切相关。发动机响应时间由针栓移动时间和针栓移动造成的压力延迟时间组成;随针栓移动速度增大,针栓移动过程与压力延迟过程相对比重发生变化,使得响应时间先快速缩短后趋向于定值,由32ms缩短至11.6ms,而推力过冲逐渐增大,但在针栓打开过程中响应时间更短,推力过冲更大,并且计算表明压力和等效喉部面积的相对变化率决定了推力过冲;随着正压力指数的增大,压力调节范围增大,推力过冲和响应时间均增加,而负压力指数的推进剂明显缩短响应时间,抑制推力过冲;凸型面针栓能够缩短响应时间同时降低推力过冲,可根据等效喉部面积相对变化率获得最佳型面曲率,使得响应时间和推力过冲最小。  相似文献   

12.
水下超声速气流流场非定常特性研究   总被引:3,自引:3,他引:0       下载免费PDF全文
许海雨  罗凯  刘日晨 《推进技术》2019,40(11):2618-2625
上浮水雷在工作过程中环境压力大幅度变化,针对上浮水雷火箭发动机具有三种不同工作状态(欠膨胀、完全膨胀、过膨胀)的特点,采用VOF两相流模型,建立了水下火箭发动机在不同工作状态喷射流发展的轴对称计算模型,分别在来流速度0m/s和50m/s两种工况下,研究了水下发动机在不同工作状态时喷射流发展规律及流场脉动特性。结果显示,在静水条件下,欠膨胀工况时颈缩发生位置距喷管出口较远,流场压力和喉部流量没有发生脉动现象,其它工况时颈缩发生位置距喷管出口较近,完全膨胀工况和过膨胀工况喷管出口最大压力振幅分别为5.5MPa,7MPa;喷管喉部流量振动幅度约为5.2%,32.8%;在有流速条件下,三种工作状态发生颈缩、胀鼓和回击现象的位置距离喷管出口较远,完全膨胀喷管出口最大压力振幅为2MPa,喷管喉部流量未发生脉动特性,过膨胀工况喷管出口最大压力振幅6.1MPa,喉部流量振动幅度30.4%。  相似文献   

13.
针对节流式燃/氧分离发动机建立非定常准一维内弹道数值模型和性能调控机理关系式,以对发动机推力调控过程进行预示。数值模型考虑燃烧室中的燃气注入、壁面摩擦和推进剂燃面退移,采用有限速率化学反应模型描述化学非平衡过程。利用该数值模型,计算得到了节流式燃/氧分离发动机的调控性能参数及内部流动参数分布情况。结果显示,当流量调节阀喉部半径由2.89 mm调节至1.65 mm时,发动机推力可由105.09 N增至432.18 N,推力提升至调节前推力的411.25%,验证了节流式燃/氧分离发动机的推力调控能力。发动机在流量调节阀作动过程中出现负调现象,调节阀作动速度越大,负调量越大,但性能参数的响应时间越短。发动机性能调控影响因素分析表明:推进剂压力指数增大和喷管喉部半径减小均有助于节流式燃/氧分离发动机性能调控能力的提升,从而提出了喷管可调的节流式燃/氧分离发动机方案。其工作过程的仿真结果表明:在特定的推力调节比要求下,减小喷管喉部半径能够有效降低富燃燃烧室承压水平,为发动机性能调控提供更多可行方案。  相似文献   

14.
高室压脉冲火箭发动机由于使用差动式可移动喷注器,能够得到比供给压强高得多的燃烧室压强.为了分析其工作特性,建立了单组元脉冲火箭发动机挤压喷注、燃烧、排气过程的集总参数模型,以硝酸羟铵(HAN)基作为单组元推进剂,采用四阶龙格-库塔法对模型进行求解.分别从喷注器喷孔面积、喷注器差动面积比、喷管喉部面积、喷注器行程等方面分析并总结了结构参数对单组元高室压脉冲发动机性能的影响规律及影响程度.结果表明:计算模型能反映发动机的实际工作过程,其中,喷注器行程对燃烧室平均压强和平均比冲的影响最大,平均推力则对喷管喉部面积的变化最为敏感,上述两个结构参数是发动机优化设计时的首要考虑因素;其他结构参数对发动机也存在不同程度的影响,可以作为次要因素来考虑.   相似文献   

15.
孙巍伟  魏志军  陶欢  王宁飞 《推进技术》2014,35(10):1426-1433
为了更好地了解热水火箭发动机的工作特性,建立了热水火箭发动机喷管流动的数值计算模型,并通过算例进行验证。通过对发动机喷管内部流场的研究,发现收敛段中压力首先降到初始温度对应的饱和压强,然后继续降低,并且在喉部的位置开始发生相变,从而使流动变为气液两相流,而且喷管出口处气相体积分数高达99%以上;由于变声速的原因,可以使两相流的流动在喉部之后达到超声速;把喷管的流动分为三个过程:单向流动过程、降压闪蒸过程和膨胀加速过程,与常规的化学能火箭发动机相比有类似性,但是由于闪蒸相变的存在,使其存在一定的复杂性。  相似文献   

16.
膏体推进剂发动机试验   总被引:10,自引:1,他引:10  
通过发动机试验系统,进行了膏体推进剂发动机热格栅点火试验和多次关机 启动试验研究。试验发动机带有供料装置,供料压强为7 5MPa,推进剂流量为51g s,喷管喉径为7mm,燃烧室平均压强约1 7MPa,总工作时间大于136s。试验获得了膏体发动机多次点火的特性参数和进行多次关机 启动的压强曲线。试验结果表明:选用的膏体推进剂具有很好的热格栅点火性能,点火参数分布较均匀;膏体发动机具有良好的能量可控性。  相似文献   

17.
由喷嘴连接的燃烧室到供应系统压力振荡传递过程研究   总被引:2,自引:2,他引:2  
为了研究在压力振荡由液体火箭发动机燃烧室传递到供应系统的过程中喷嘴所起的作用,从理论上分析了压力振荡由燃烧室到供应系统通过喷嘴的传递过程,推导了振荡传递过程的传递函数.讨论带有各种喷嘴的供应系统的动态特性,对供应系统管路长度、燃烧室压强、喷嘴种类、喷嘴压降及喷嘴结构尺寸对燃烧室压力振荡引起供应系统压力振荡的影响进行了计算,得到了喷嘴以及工况参数在传递过程中的影响规律.   相似文献   

18.
复合固体推进剂的燃速压力指数   总被引:1,自引:0,他引:1       下载免费PDF全文
张仁 《推进技术》1980,1(1):40-52
复合固体推进剂是由无机氧化剂,有机粘合剂,金属燃料以及各种添加物所组成的非均相混合物。这种推进剂的燃烧过程是由一组在气相,液相及固相中同时发生的化学反应及传热、传质等物理过程所构成的一种复杂过程。因此,复合固体推进剂的燃烧速度受到许多因素的影响,如燃烧室压力,装药初温,氧化剂的类型、含量、粒度及其不同粒度的配比,粘合剂的类型,燃速调节剂的特性等都会影响复合固体推进剂的燃速。然而,在上述诸因素中,压力是影响燃速的最重要的因素。  相似文献   

19.
以含硼贫氧固体推进剂为燃料,对带凹腔火焰稳定器的固体火箭超燃冲压发动机燃烧室构型首次开展了地面直连试验研究.试验模拟了23km,5.5Ma的飞行工况,通过测量压强、推力和流量等参数,得出了燃烧室性能.试验结果表明:一次富燃燃气在燃气发生器喉部沉积导致燃气流量持续提高,试验过程中当量比由0.44逐渐增加至0.54;本文所...  相似文献   

20.
分别在三组元、四组元固体复合推进剂的基础上制备了添加有机氟化物(OF)的高铝含量(18%)固体复合推进剂,利用高过载烧蚀模拟发动机考察了燃烧室压强为7MPa的条件下,上述推进剂对于三元乙丙橡胶绝(EPDM)热材料的烧蚀特性。结果表明,在OF为3%取代添加量的情况下,添加OF的推进剂配方相比于常规空白配方,对绝热材料的最大线烧蚀率可降低30%以上;对于四组元推进剂,含有OF的推进剂燃烧还能够有效抑制燃烧室的凝聚相沉积。实验通过分析推进剂的燃面特性、高过载烧蚀模拟发动机燃烧室沉积物组成、试验后绝热材料表面炭层结构、推进剂包覆材料表面沉积物形貌,探讨了配方中OF对于降低推进剂烧蚀特性的机理。分析认为,由于添加OF的推进剂燃烧能够形成粒径更小的凝聚相燃烧粒子,从而降低了它们在发动机流场中的动量,进而抑制其对于绝热材料的冲刷作用,致使烧蚀特性下降。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号