共查询到20条相似文献,搜索用时 15 毫秒
1.
C L Mackowiak J L Garland R F Strayer B W Finger R M Wheeler 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1996,18(1-2):281-287
This study compared the growth of potato plants on nutrients recycled from inedible potato biomass. Plants were grown for 105 days in recirculating, thin-film hydroponic systems containing four separate nutrient solution treatments: (1) modified half-strength Hoagland's (control), 2) liquid effluent from a bioreactor containing inedible potato biomass, 3) filtered (0.2 micrometer) effluent, and 4) the water soluble fraction of inedible potato biomass (leachate). Approximately 50% of the total nutrient requirement in treatments 2-4 were provided (recycled) from the potato biomass. Leachate had an inhibitory effect on leaf conductance, photosynthetic rate, and growth (50% reduction in plant height and 60% reduction in tuber yield). Plants grown on bioreactor effluent (filtered or unfiltered) were similar to the control plants. These results indicated that rapidly degraded, water soluble organic material contained in the inedible biomass, i.e., material in leachate, brought about phytotoxicity in the hydroponic culture of potato. Recalcitrant, water soluble organic material accumulated in all nutrient recycling treatments (650% increase after 105 days), but no increase in rhizosphere microbial numbers was observed. 相似文献
2.
Y. Kitaya H. HiraiX. Wei A.F.M.S. IslamM. Yamamoto 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2008,41(5):730-735
Life support of crews in long-duration space missions for other planets will be highly dependent on amounts of food, atmospheric O2 and clean water produced by plants. Therefore, the space farming system with scheduling of crop production, obtaining high yields with a rapid turnover rate, converting atmospheric CO2 to O2 and purifying water should be established with employing suitable plant species and cultivars and precisely controlling environmental variables around plants grown at a high density in a limited space. In this study, we developed a new hydroponic method for producing tuberous roots and fresh edible leaves and stems of sweetpotato. In the first experiment, we examined the effects of water contents in the rooting substrate on growth and tuberous root development of sweetpotato. The rooting substrates made with rockwool slabs were inclined in a culture container and absorbed nutrient solution from the lower end of the slabs by capillary action. Tuberous roots developed on the lower surface of the rockwool slabs. The tuberous roots showed better growth and development at locations farther from the water surface on the rockwool slabs, which had lower water content. In the second experiment, three sweetpotato cultivars were cultured in a hydroponic system for five months from June to November under the sun light in Osaka, Japan as a fundamental study for establishing the space farming system. The cultivars employed were ‘Elegant summer’, ‘Kokei-14’ and ‘Beniazuma’. The hydroponic system mainly consisted of culture containers and rockwool slabs. Dry weights of tuberous roots developed in the aerial space between the rockwool slab and the nutrient solution filled at the bottom of the culture container were 0.34, 0.45 and 0.23 kg/plant and dry weights of the top portion (leaves, petioles and stems) were 0.42, 0.29 and 0.61 kg/plant for ‘Elegant summer’, ‘Kokei-14’ and ‘Beniazuma’, respectively. Young stems and leaves as well as tuberous roots of ‘Elegant summer’ are edible and palatable. Therefore ‘Elegant summer’ would be a promising crop to produce large amounts of food with high nutritional values in the present hydroponic system in space farming. 相似文献
3.
D L Bubenheim K Wignarajah 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1997,20(10):2029-2035
The goal of resource recovery in a regenerative life support system is maintenance of product quality to sure support of reliable and predictable levels of life support function performance by the crop plant component. Further, these systems must be maintained over extended periods of time, requiring maintenance of nutrient solutions to avoid toxicity and deficiencies. The focus of this study was to determine the suitability of the ash product following incineration of inedible biomass as a source of inorganic nutrients for hydroponic crop production. Inedible wheat biomass was incinerated and ash quality characterized. The incinerator ash was dissolved in adequate nitric acid to establish a consistent nitrogen concentration is all nutrient solution treatments. Four experimental nutrient treatments were included: control, ash only, ash supplemented to match the control treatment, and ash only quality formulated with reagent grade chemicals. When nutrient solutions were formulated using only ash following incineration of inedible biomass, a balance in solution is established representing elemental retention following incineration and nutrient proportions present in the original biomass. The resulting solution is not identical to the control. This imbalance resulted in a suppression of crop growth. When the ash is supplemented with reagent grade chemicals to establish the same balance as in the control--growth is identical to the control. The ash appears to carry no phytotoxic materials. Growth in solution formulated with reagent grade chemicals but matching the quality of the ash only treatment resulted in similar growth to that of the ash only treatment. The ash product resulting from incineration of inedible biomass appears to be a suitable form for recycle of inorganic nutrients to crop production. 相似文献
4.
P A Loretan C K Bonsi D G Mortley R M Wheeler C L Mackowiak W A Hill C E Morris A A Trotman P P David 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1994,14(11):277-280
Effects of relative humidity, light intensity and photoperiod on growth of 'Ga Jet' and 'TI-155' sweetpotato cultivars, using the nutrient film technique (NFT), have been reported. In this study, the effect of ambient temperature regimes (constant 28 degrees C and diurnal 28:22 degrees C day:night) and different CO2 levels (ambient, 400, 1000 and 10000 microliters/L--400, 1000 and 10000 ppm) on growth of one or both of these cultivars in NFT are reported. For a 24-h photoperiod, no storage roots were produced for either cultivar in NFT when sweetpotato plants were grown at a constant temperature of 28 degrees C. For the same photoperiod, when a 28:22 degrees C diurnal temperature variation was used, there were still no storage roots for 'TI-155' but the cv. 'Ga Jet' produced 537 g/plant of storage roots. For both a 12-h and 24-h photoperiod, 'Ga Jet' storage root fresh and dry weight tended to be higher with a 28:22 degrees C diurnal temperature variation than with a constant 28 degrees C temperature regime. Preliminary results with both 'Ga Jet' and 'TI 155' cultivars indicate a distinctive diurnal stomatal response for sweetpotato grown in NFT under an ambient CO2 level. The stomatal conductance values observed for 'Ga Jet' at elevated CO2 levels indicated that the difference between the light- and dark-period conductance rates persisted at 400, 1000, and 10000 microliters/L. 相似文献
5.
A A Trotman A M Almazan A D Alexander P A Loretan X Zhou J Y Lu 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1996,18(1-2):267-279
Many challenges are presented by biological degradation in a bioregenerative Controlled Ecological Life Support System (CELSS) as envisioned by the U.S. National Aeronautics and Space Administration (NASA). In the studies conducted with biodegradative microorganism indigenous to sweetpotato fields, it was determined that a particle size of 75 microns and incubation temperature of 30 degrees C were optimal for degradation. The composition of the inedible biomass and characterization of plant nutrient solution indicated the presence of potential energy sources to drive microbial transformations of plant waste. Selected indigenous soil isolates with ligno-cellulolytic or sulfate-reducing ability were utilized in biological studies and demonstrated diversity in ability to reduce sulfate in solution and to utilize alternative carbon sources: a lignin analog--4-hydroxy, 3-methoxy cinnamic acid, cellulose, arabinose, glucose, sucrose, mannitol, galactose, ascorbic acid. 相似文献
6.
C L Mackowiak R M Wheeler G W Stutte N C Yorio J C Sager 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1997,20(10):1815-1820
Plant-derived nutrients were successfully recycled in a Controlled Ecological Life Support System (CELSS) using biological methods. The majority of the essential nutrients were recovered by microbiologically treating the plant biomass in an aerobic bioreactor. Liquid effluent containing the nutrients was then returned to the biomass production component via a recirculating hydroponic system. Potato (Solanum tuberosum L.) cv. Norland plants were grown on those nutrients in either a batch production mode (same age plants on a nutrient solution) or a staggered production mode (4 different ages of plants on a nutrient solution). The study continued over a period of 418 days, within NASA Breadboard Project's Biomass Production Chamber at the Kennedy Space Center. During this period, four consecutive batch cycles (104-day harvests) and 13 consecutive staggered cycles (26-day harvests) were completed using reclaimed minerals and compared to plants grown with standard nutrient solutions. All nutrient solutions were continually recirculated during the entire 418 day study. In general, tuber yields with reclaimed minerals were within 10% of control solutions. Contaminants, such as sodium and recalcitrant organics tended to increase over time in solutions containing reclaimed minerals, however tuber composition was comparable to tubers grown in the control solutions. 相似文献
7.
J L Garland 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1994,14(11):383-386
Strategies to control the microbial community associated with plant growth systems need to be based on a fundamental understanding of the factors which structure and regulate the community. Spatial and temporal patterns in the abundance and production rate of microorganisms in hydroponic systems containing wheat were examined to evaluate how root-derived carbon is processed. The relevance of results to monitoring and control strategies is discussed. 相似文献
8.
K Wignarajah D L Bubenheim 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1997,20(10):1833-1843
Lettuce plants were grown utilizing water, inorganic elements, and CO2 inputs recovered from waste streams. The impact of these waste-derived inputs on the growth of lettuce was quantified and compared with results obtained when reagent grade inputs were used. Phytotoxicity was evident in both the untreated wastewater stream and the recovered CO2 stream. The toxicity of surfactants in wastewater was removed using several treatment systems. Harmful effects of gaseous products resulting from incineration of inedible biomass on crop growth were observed. No phytotoxicity was observed when inorganic elements recovered from incinerated biomass ash were used to prepare the hydroponic solution, but the balance of nutrients had to be modified to achieve near optimal growth. The results were used to evaluate closure potential of water and inorganic elemental loops for integrated plant growth and human requirements. 相似文献
9.
J D McKeehen C A Mitchell R M Wheeler B Bugbee S S Nielsen 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1996,18(4-5):73-83
Environment has significant effects on the nutrient content of field-grown crop plants. Little is known, however, about compositional changes caused by controlled environments in which plants receive only artificial radiation and soilless, hydroponic culture. This knowledge is essential for developing a safe, nutritious diet in a Controlled Ecological Life-Support System (CELSS). Three crops that are candidates for inclusion in a CELSS (rice, wheat, and white potato) were grown both in the field and in controlled environments where the hydroponic nutrient solution, photosynthetic photon flux (PPF), and CO2 level were manipulated to achieve rapid growth rates. Plants were harvested at maturity, separated into discrete parts, and dried prior to analysis. Plant materials were analyzed for proximate composition (protein, fat, ash, and carbohydrate), total nitrogen (N), nitrate, minerals, and amino-acid composition. The effect of environment on nutrient content varied by crop and plant part. Total N and nonprotein N (NPN) contents of plant biomass generally increased under controlled-environment conditions compared to field conditions, especially for leafy plant parts and roots. Nitrate levels were increased in hydroponically-grown vegetative tissues, but nitrate was excluded from grains and tubers. Mineral content changes in plant tissue included increased phosphorus and decreased levels of certain micronutrient elements under controlled-environment conditions. These findings suggest that cultivar selection, genetic manipulation, and environmental control could be important to obtain highly nutritious biomass in a CELSS. 相似文献
10.
W R Schwingel J C Sager 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1996,18(1-2):293-297
An anaerobic reactor seeded with organisms from an anaerobic lagoon was used to study the degradation of inedible crop residues from potato and wheat crops grown in a closed environment. Conversion of this biomass into other products was also evaluated. Degradation of wheat volatile solids was about 25% where that of potato was about 50%. The main product of the anaerobic fermentation of both crops was acetic acid with smaller quantities of propionate and butyrate produced. Nitrate, known to be high in concentration in inedible potato and wheat biomass grown hydroponically, was converted to ammonia in the anaerobic reactor. Both volatile fatty acid and ammonia production may have implications in a crop production system. 相似文献
11.
J S Ferraro C A Fuller F M Sulzman 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1989,9(11):251-260
The circadian rhythm of conidiation in Neurospora crassa is thought to be an endogenously derived circadian oscillation; however, several investigators have suggested that circadian rhythms may, instead, be driven by some geophysical time cue(s). An experiment was conducted on space shuttle flight STS-9 in order to test this hypothesis; during the first 7-8 cycles in space, there were several minor alterations observed in the conidiation rhythm, including an increase in the period of the oscillation, an increase in the variability of the growth rate and a diminished rhythm amplitude, which eventually damped out in 25% of the flight tubes. On day seven of flight, the tubes were exposed to light while their growth fronts were marked. Some aspect of the marking process reinstated a robust rhythm in all the tubes which continued throughout the remainder of the flight. These results from the last 86 hours of flight demonstrated that the rhythm can persist in space. Since the aberrant rhythmicity occurred prior to the marking procedure, but not after, it was hypothesized that the damping on STS-9 may have resulted from the hypergravity pulse of launch. To test this hypothesis, we conducted investigations into the effects of altered gravitational forces on conidiation. Exposure to hypergravity (via centrifugation), simulated microgravity (via the use of a clinostat) and altered orientations (via alterations in the vector of a 1 g force) were used to examine the effects of gravity upon the circadian rhythm of conidiation. 相似文献
12.
C P McKay E I Friedmann R A Wharton W L Davies E I Friedman 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1992,12(4):231-238
We divide the history of water on the Martian surface into four epochs based upon the atmospheric temperature and pressure. In Epoch 1, during which a primordial CO2 atmosphere was actively maintained by impact and volcanic recycling, we presume the mean annual temperature to have been above freezing, the pressure to have exceeded one atmosphere, and liquid water to have been widespread. Under such conditions, similar to early Earth, life could have arisen and become abundant. After this initial period of recycling, atmospheric CO2 was irreversibly lost due to carbonate formation and the pressure and temperature declined. In Epoch II, the mean annual temperature fell below freezing but peak temperatures would have exceeded freezing. Ice covered lakes, similar to those in the McMurdo Dry Valleys of Antarctica could have provided a habitat for life. In Epoch III, the mean and peak temperatures were below freezing and there would have been only transient liquid water. Microbial ecosystems living in endolithic rock "greenhouses" could have continued to survive. Finally, in Epoch IV, the pressure dropped to near the triple point pressure of water and liquid water could no longer have existed on the surface and life on the surface would have become extinct. 相似文献
13.
P Chagvardieff B Dimon A Souleimanov D Massimino S Le Bras M Pean D Louche-Teissandier 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1997,20(10):1971-1974
Wheat, potato, pea and tomato crops were cultivated from seeding to harvest in a controlled and confined growth chamber at elevated CO2 concentration (3700 microL L-1) to examine the effects on biomass production and edible part yields. Different responses to high CO2 were recorded, ranging from a decline in productivity for wheat, to slight stimulation for potatoes, moderate increase for tomatoes, and very large enhancement for pea. Mineral content in wheat and pea seeds was not greatly modified by the elevated CO2. Short-term experiments (17 d) were conducted on potato at high (3700 microL L-1) and very high (20,000 microL L-1) CO2 concentration and/or low O2 partial pressure (approximately 20,600 microL L-1 or 2 kPa). Low O2 was more effective than high CO2 in total biomass accumulation, but development was affected: Low O2 inhibited tuberization, while high CO2 significantly increased production of tubers. 相似文献
14.
M Oguchi K Nitta K Ohtsubo Y Tako 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1994,14(11):237-240
In order to determine a required plant cultivation area which can sustain human life in a closed environment, the material circulating measurement system including a Closed-type Plant Cultivation Equipment (CPCE) in which the metabolic data of plants can be accurately measured has been constructed. According to results from cultivation experiments using rice, the harvest index was 29.9% for 110 days, and the required crop area to supply food, oxygen and water for one person was calculated to be about 111m2, 36m2 and 0.9m2, respectively. 相似文献
15.
K A Corey D J Barta M A Edeen D L Henninger 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1997,20(10):1861-1867
The variable pressure growth chamber (VPGC) was used in a 34-day functional test to grow a wheat crop using reduced pressure (70 kPa) episodes totalling 131 hours. Primary goals of the test were to verify facility and subsystem performance at 70 kPa and to determine responses of a wheat stand to reduced pressure and modified partial pressures of carbon dioxide and oxygen. Operation and maintenance of the chamber at 70 kpa involved continuous evacuation of the chamber atmosphere, leading to CO2 influx and efflux. A model for calculating CO2-exchange rates (net photosynthesis and dark respiration) was developed and tested and involved measurements of chamber leakage to determine appropriate corrections. Measurement of chamber leakage was based on the rate of pressure change over a small pressure increment (70.3 to 72.3 kPa) with the pump disabled. Leakage values were used to correct decreases and increases in chamber CO2 concentration resulting from net photosynthesis (Ps) and dark respiration (DR), respectively. Composite leakage corrections (influx and efflux) at day 7 of the test were 9% and 19% of the changes measured for Ps and DR, respectively. On day 33, composite corrections were only 3% for Ps and 4% for DR. During the test, the chamber became progressively tighter; the leak rate at 70.3 kPa decreasing from 2.36 chamber volumes/day pretest, to 1.71 volumes/day at the beginning of the test, and 1.16 volumes/day at the end of the test. Verification of the short-term leakage tests (rate of pressure rise) were made by testing CO2 leakage with the vacuum pump enabled and disabled. Results demonstrate the suitability of the VPGC or conducting gas exhange measurements of a crop stand at reduced pressure. 相似文献
16.
T Volk J D Rummel 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1987,7(4):141-148
Design decisions to aid the development of future space-based biological life support systems (BLSS) can be made with simulation models. Here we develop the biochemical stoichiometry for 1) protein, carbohydrate, fat, fiber, and lignin production in the edible and inedible parts of plants; 2) food consumption and production of organic solids in urine, feces, and wash water by the humans; and 3) operation of the waste processor. Flux values for all components are derived for a steady-state system with wheat as the sole food source. The large-scale dynamics of a materially-closed (BLSS) computer model is described in a companion paper. An extension of this methodology can explore multi-food systems and more complex biochemical dynamics while maintaining whole-system closure as a focus. 相似文献
17.
C Chun C A Mitchell 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1997,20(10):1855-1860
A procedure for dynamic optimization of net photosynthetic rate (Pn) for crop production in Controlled Ecological Life-Support Systems (CELSS) was developed using leaf lettuce as a model crop. Canopy Pn was measured in real time and fed back for environmental control. Setpoints of photosynthetic photon flux (PPF) and CO2 concentration for each hour of the crop-growth cycle were decided by computer to reach a targeted Pn each day. Decision making was based on empirical mathematical models combined with rule sets developed from recent experimental data. Comparisons showed that dynamic control resulted in better yield per unit energy input to the growth system than did static control. With comparable productivity parameters and potential for significant energy savings, dynamic control strategies will contribute greatly to the sustainability of space-deployed CELSS. 相似文献
18.
V N Sychev M A Levinskikh Ye Ya Shepelev 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2003,31(7):1693-1698
Ground-based experiments at RF SSC-IBMP RAS (State Science Center of Russian Federation--Institute of Biomedical Problems of Russian Academia of Science) were aimed at overall studies of a human-unicellular algae-mineralization LSS (life support system) model. The system was 15 m3 in volume. It contained 45 L of algal suspension with a dry substance density of 10-12 g per liter; water volume, including the algal suspension, was 59 L. More sophisticated model systems with partial substitution of unicellular algae with higher plates (crop area of 15 m2) were tested in three experiments from 1.5 to 2 months in duration. The experiments demonstrated that LSS employing the unicellular algae play not only a macrofunction (regeneration of atmosphere and water) but also carry some other functions (purification of atmosphere, formation of microbial cenosis etc.) providing an adequate human environment. It is also important that functional reliability of the algal regenerative subsystem is secured by a huge number of cells able, in the event of death of a part of population, to recover in the shortest possible time the size of population and, hence, functionality of the LSS autotrophic component. For a long period of time a Martian crew will be detached from Earth's biosphere and for this reason LSS of their vehicle must be highly reliable, robust and redundant. One of the approaches to LSS redundancy is installation of two systems with different but equally efficient regeneration technologies, i.e. physical-chemical and biological. At best, these two systems should operate in parallel sharing the function of regeneration of the human environment. In case of failure or a sharp deterioration in performance of one system the other will, by way of redundancy, increase its throughput to make up for the loss. This LSS design will enable simultaneous handling of a number of critical problems including adequate satisfaction of human environmental needs. 相似文献
19.
G Kraft M Scholz 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1994,14(10):997-1004
The exposure of astronauts and electronics to the cosmic radiation especially to the particle component pose a major risk to all space flights. Up to now it is not possible to quantify this risk within acceptable limits of accuracy. This uncertainty is not only caused by difficulties in the more or less exact prediction of the incidence of the cosmic radiation but depends also on the problem of the quantification of the radiation field and the correlation of the biological effect. Usually the biological action of a mixed radiation field is estimated as product of the measured dose with an average quality factor, the relative biological efficiency. Because of the large variation in energy and atomic number of the cosmic particles, average values of the quality factor are not precise for risk estimation. A more appropriate way to treat the biological effects of mixed radiation is the concept of particle fluence and action cross section. 相似文献
20.
I V Gribovskaya J I Kudenko YuAGitelson 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1997,20(10):2045-2048
Liquid human wastes and household water used for nutrition of wheat made possible to realize 24% closure for the mineral exchange in an experiment with a 2-component version of "Bios-3" life support system (LSS) Input-output balances of revealed, that elements (primarily trace elements) within the system. The structural materials (steel, titanium), expanded clay aggregate, and catalytic furnace catalysts. By the end of experiment, the permanent nutrient solution, plants, and the human diet gradually built up Ni, Cr, Al, Fe, V, Zn, Cu, and Mo. Thorough selection and pretreatment of materials can substantially reduce this accumulation. To enhance closure of the mineral exchange involves processing of human-metabolic wastes and inedible biomes inside LSS. An efficient method to oxidize wastes by hydrogen peroxide icon a quartz reactor at the temperature of 80 degrees C controlled electromagnetic field is proposed. 相似文献