首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
G2-chromosome aberrations induced by high-LET radiations.   总被引:1,自引:0,他引:1  
We report measurement of initial G2-chromatid breaks in normal human fibroblasts exposed to various types of high-LET particles. Exponentially growing AG 1522 cells were exposed to gamma rays or heavy ions. Chromosomes were prematurely condensed by calyculin A. Chromatid-type breaks and isochromatid-type breaks were scored separately. The dose response curves for the induction of total chromatid breaks (chromatid-type + isochromatid-type) and chromatid-type breaks were linear for each type of radiation. However, dose response curves for the induction of isochromatid-type breaks were linear for high-LET radiations and linear-quadratic for gamma rays. Relative biological effectiveness (RBE), calculated from total breaks, showed a LET dependent tendency with a peak at 55 keV/micrometer silicon (2.7) or 80 keV/micrometer carbon (2.7) and then decreased with LET (1.5 at 440 keV/micrometer). RBE for chromatid-type break peaked at 55 keV/micrometer (2.4) then decreased rapidly with LET. The RBE of 440 keV/micrometer iron particles was 0.7. The RBE calculated from induction of isochromatid-type breaks was much higher for high-LET radiations. It is concluded that the increased production of isochromatid-type breaks, induced by the densely ionizing track structure, is a signature of high-LET radiation exposure.  相似文献   

2.
Radiation protection involves the limitation of exposure to below threshold doses for direct (or deterministic) effects and a knowledge of the risk of stochastic effects after low doses. The principal stochastic risk associated with low dose rate galactic cosmic rays is the increased risk of cancer. Estimates of this risk depend on two factors (a) estimates of cancer risk for low-LET radiation and (b) values of the appropriate radiation weighting factors, WR, for the high-LET radiations of galactic cosmic rays. Both factors are subject to considerable uncertainty. The low-LET cancer risk derived from the late effects of the atomic bombs is vulnerable to a number of uncertainties including especially that from projection in time, and from extrapolation from high to low dose rate. Nevertheless, recent low dose studies of workers and others tend to confirm these estimates. WR, relies on biological effects studied mainly in non-human systems. Additional laboratory studies could reduce the uncertainties in WR and thus produce a more confident estimate of the overall risk of galactic cosmic rays.  相似文献   

3.
Recent results for neutron radiation-induced tumors are presented to illustrate the complexities of the dose-response curves for high-LET radiation. It is suggested that in order to derive an appropriate model for dose-response curves for the induction of tumors by high-LET radiation it is necessary to take into account dose distribution, cell killing and the susceptibility of the tissue under study. Preliminary results for the induction of Harderian gland tumors in mice exposed to various heavy ion beams are presented. The results suggest that the effectiveness of the heavy ion beams increases with increasing LET. The slopes of the dose-response curves for the different high-LET radiations decrease between 20 and 40 rads and therefore comparisons of the relative effectiveness should be made from data obtained at doses below about 20-30 rads.  相似文献   

4.
The radiation protection guidelines of the National Aeronautics and Space Administration (NASA) are under review by Scientific Committee 75 of the National Council Protection and Measurements. The re-evaluation of the current guidelines is necessary, first, because of the increase in information about radiation risks since 1970 when the original recommendations were made and second, the population at risk has changed. For example, women have joined the ranks of the astronauts. Two types of radiation, protons and heavy ions, are of particular concern in space. Unfortunately, there is less information about the effects on tissues and cancer by these radiations than by other radiations. The choice of Quality Factors (Q) for obtaining dose equivalents for these radiations, is an important aspect of the risk estimate for space travel. There are not sufficient data for the induction of late effects by either protons or by heavy ions. The current information suggests a RBE for the relative protons of about 1, whereas, a RBE of 20 for tumor induction by heavy ions, such as iron-56, appears appropriate. The recommendations for the dose equivalent career limits for skin and the lens of the eye have been reduced but the 30-day and annual limits have been raised.  相似文献   

5.
Cell-cycle radiation response: role of intracellular factors.   总被引:1,自引:0,他引:1  
We have been studying variations of radiosensitivity and endogenous cellular factors during the course of progression through the human and hamster cell cycle. After exposure to low-LET radiations, the most radiosensitive cell stages are mitosis and the G1/S interface. The increased activity of a specific antioxidant enzyme such as superoxide dismutase in G1-phase, and the variations of endogenous thiols during cell division are thought to be intracellular factors of importance to the radiation survival response. These factors may contribute to modifying the age-dependent yield of lesions or more likely, to the efficiency of the repair processes. These molecular factors have been implicated in our cellular measurements of the larger values for the radiobiological oxygen effect late in the cycle compared to earlier cell ages. Low-LET radiation also delays progression through S phase which may allow more time for repair and hence contribute to radioresistance in late-S-phase. The cytoplasmic and intranuclear milieu of the cell appears to have less significant effects on lesions produced by high-LET radiation compared to those made by low-LET radiation. High-LET radiation fails to slow progression through S phase, and there is much less repair of lesions evident at all cell ages; however, high-LET particles cause a more profound block in G2 phase than that observed after low-LET radiation. Hazards posed by the interaction of damage from sequential doses of radiations of different qualities have been evaluated and are shown to lead to a cell-cycle-dependent enhancement of radiobiological effects. A summary comparison of various cell-cycle-dependent endpoints measured with low- or high-LET radiations is given and includes a discussion of the possible additional effects introduced by microgravity.  相似文献   

6.
While Q is specified as a function of linear energy transfer (LET) in practice the Q for neutrons has been selected by a judgment decision based on the relative biological effectiveness (RBE) to induce stochastic effects. There are no RBE values for tumor induction by heavy ions or protons in humans. Thus, selection of Q values has been based either on LET (or lineal energy) or RBEs from animal experiments. Estimates of Q for heavy ions in low earth orbit (LEO) range from about 5 to 14. The average Q value of all radiation in LEO has been estimated to be about 1.3. There is a lack of experimental data for RBEs for heavy ions but RBE increases as a function of LET. In the case of the Harderian gland the RBE reaches a maximum of 25-30 between about 100-200 keV/micrometer but does not appear to decrease at higher LETs. The International Commission of Radiological Protection have proposed the use of radiation weighting factors in lieu of quality factors. The weighting factors will range from 1 to 20.  相似文献   

7.
It has been known for many years that relationships between absorbed dose and biological effect vary with the type of radiation. In particular, neutrons and alpha particles are more damaging than x or gamma radiations. This applies to a range of biological effects such as cell killing, chromosome aberrations, cell mutation, cell transformation as well as life shortening and cancer induction in animals. The application of this knowledge to devise a scheme for specifying the quality factor (Q) in radiological protection has been the subject of much debate. There are no tumour data in humans from which the quality factor may be derived. The problems of using animal and cell transformation data which are probably the next best choice are discussed. The extensive data base on chromosomal aberrations in human lymphocytes is described and discussed in terms of relevance to deducing quality factors. Particular emphasis is placed on data obtained at low doses and low dose rates.  相似文献   

8.
9.
Estimation of exposure due to environmental and other sources of radiations of high-LET and low-LET is of interest in radiobiology and radiation protection for risk assessment. To account for the differences in effectiveness of different types of radiations various parameters have been used. However, the relative inadequacy of the commonly used parameters, including dose, fluence, linear energy transfer, lineal energy, specific energy and quality factor, has been made manifest by the biological importance of the microscopic track structure and primary modes of interaction. Monte Carlo track structure simulations have been used to calculate the frequency of energy deposition by radiations of high- and low-LET in target sizes similar to DNA and higher order genomic structure. Tracks of monoenergetic heavy ions and electrons were constructed by following the molecular interaction-by-interaction histories of the particles down to 10 eV. Subsequently, geometrical models of these assumed biological targets were randomly exposed to the radiation tracks and the frequency of energy depositions obtained were normalized to unit dose in unit density liquid water (l0(3) kg m-3). From these data and a more sophisticated model of the DNA, absolute yields of both single- and double-strand breaks expressed in number of breaks per dalton per Gray were obtained and compared with the measured yields. The relative biological effectiveness (RBE) for energy depositions in cylindrical targets has been calculated using 100 keV electrons as the reference radiation assuming the electron track-ends contribution is similar to that in 250 kV X-ray or Co60 gamma-ray irradiations.  相似文献   

10.
Studies of the effects of radiation at the cellular level have generally been carried out by exposing cells randomly to the charged-particle tracks of a radiation beam. Recently, a number of laboratories have developed techniques for microbeam irradiation of individual cells. These approaches are designed to remove much of the randomness of conventional methods and allow the nature of the targets and pathways involved in a range of radiation effects to be studied with greater selectivity. Another advantage is that the responses of individual cells can be followed in a time-lapse fashion and, for example, processes such as "bystander" effects can be studied clearly. The microbeam approach is of particular importance in mechanistic studies related to the risks associated with exposure to low fluences of charged particles. This is because it is now possible to determine the actions of strictly single particle tracks and thereby mimic, under in vitro conditions, exposures at low radiation dose that are significant for protection levels, especially those involving medium- to high-LET radiations. Overall, microbeam methods provide a new dimension in exploring mechanisms of radiation effect at the cellular level. Microbeam methods and their application to the study of the cellular effects of single charged-particle traversals are described.  相似文献   

11.
A general outline of the symposium titled "Mechanisms underlying cellular radiosensitivity and R.B.E." will be given in the introduction. The essential topics of molecular radiation biology are described with respect to the damage, repair and mutagenesis caused by high-LET irradiation to cellular DNA. The importance of clustered DNA lesions (locally multiply damaged sites) formed in vivo is discussed. This symposium is devoted to the mechanisms of the biological effects of radiation with high LET, especially with regard to the effects of heavy ions and neutrons which may cause possible risks in space flight, (e.g. carcinogenesis and mutagenesis). Detailed understanding of these risks, however, demands knowledge of the molecular mechanisms involved in the biological effects of high-LET radiations. Thus, it was the organizers' idea to hold a symposium dealing with primary physical and chemical events caused in cellular deoxyribonucleoproteins by densely-ionizing radiations and to relate them to track structures and energy transfer processes. The mechanisms of DNA damage were regarded from different points of view including those considering DNA repair and mutagenesis. Problems associated with cell survival and radiation protection were discussed as well. Our knowledge of the molecular mechanisms of high-LET radiation actions, however, is limited compared to what we know about low-LET radiation effects (e.g. from gamma-rays or X-rays). To emphasize this statement, I would like to summarize briefly the open questions in molecular radiation biology, what we know already about low-LET effects and what is lacking describing the effect of high-LET radiation.  相似文献   

12.
Relative Biological Effectiveness (RBE) and Quality Factor (Q) at extreme values of Linear Energy Transfer (LET) have been determined on the basis of experiments with single-cell systems and specific tissue responses. In typical single cell systems, each heavy particle (Ar or Fe) passes through a single cell or no cell. In tissue end-point experiments each heavy particle passes through several cells, and the LET can exceed 200 keV/micrometer in every cell. In most laboratory animal tissue systems, however, only a small portion of the hit cells are capable of expressing the end-point of interest to the investigator, such as cell killing, mutation or carcinogenesis. The following question must therefore be addressed: Do RBE's and Q factors derived from single-cell experiments properly account for the increased probability of multiple-cell damage by HZE tracks? A model is offered in which measured radiation effects and known tissue properties are combined to estimate the value of a multiplier of damage effectiveness on the basis of number of cells at risk, p3n, per track containing a hit cell, where n is the number of cells per track, based on tissue and organ geometry, and P3 is the probability that a cell in the track is capable of expressing the experimental end-point.  相似文献   

13.
Conventional radiation risk assessments are presently based on the additivity assumption. This assumption states that risks from individual components of a complex radiation field involving many different types of radiation can be added to yield the total risk of the complex radiation field. If the assumption is not correct, the summations and integrations performed to obtain the presently quoted risk estimates are not appropriate. This problem is particularly important in the area of space radiation risk evaluation because of the many different types of high- and low-LET radiation present in the galactic cosmic ray environment. For both low- and high-LET radiations at low enough dose rates, the present convention is that the addivity assumption holds. Mathematically, the total risk, Rtot is assumed to be Rtot = summation (i) Ri where the summation runs over the different types of radiation present. If the total dose (or fluence) from each component is such that the interaction between biological lesions caused by separate single track traversals is negligible within a given cell, it is presently considered to be reasonable to accept the additivity assumption. However, when the exposure is protracted over many cell doubling times (as will be the case for extended missions to the moon or Mars), the possibility exists that radiation effects that depend on multiple cellular events over a long time period, such as is probably the case in radiation-induced carcinogenesis, may not be additive in the above sense and the exposure interval may have to be included in the evaluation procedure. It is shown, however, that "inverse" dose-rate effects are not expected from intermediate LET radiations arising from the galactic cosmic ray environment due to the "sensitive-window-in-the-cell-cycle" hypothesis.  相似文献   

14.
Analyses of the epidemiological data on the Japanese A-bomb survivors, who were exposed to γ-rays and neutrons, provide most current information on the dose–response of radiation-induced cancer. Since the dose span of main interest is usually between 0 and 1 Gy, for radiation protection purposes, the analysis of the A-bomb survivors is often focused on this range. However, estimates of cancer risk for doses larger than 1 Gy are becoming more important for long-term manned space missions. Therefore in this work, emphasis is placed on doses larger than 1 Gy with respect to radiation-induced solid cancer and leukemia mortality. The present analysis of the A-bomb survivors data was extended by including two extra high-dose categories and applying organ-averaged dose instead of the colon-weighted dose. In addition, since there are some recent indications for a high neutron dose contribution, the data were fitted separately for three different values for the relative biological effectiveness (RBE) of the neutrons (10, 35 and 100) and a variable RBE as a function of dose. The data were fitted using a linear and a linear-exponential dose–response relationship using a dose and dose-rate effectiveness factor (DDREF) of both one and two. The work presented here implies that the use of organ-averaged dose, a dose-dependent neutron RBE and the bending-over of the dose–response relationship for radiation-induced cancer could result in a reduction of radiation risk by around 50% above 1 Gy. This could impact radiation risk estimates for space crews on long-term mission above 500 days who might be exposed to doses above 1 Gy. The consequence of using a DDREF of one instead of two increases cancer risk by about 40% and would therefore balance the risk decrease described above.  相似文献   

15.
Space radiations, especially heavy ions, constitute significant hazards to astronauts. These hazards will increase as space missions lengthen. Moreover, the dangers to astronauts will be enhanced by the persistence, or even the progression, of biological damage throughout their subsequent life spans. To assist in the assessment of risks to astronauts, we are investigating the long-term effects of heavy ions on specific animal tissues. In one study, the eyes of rabbits of various ages were exposed to a single dose of Bragg plateau 20Ne ions (LET infinity approximately equals 30 keV/micrometer). The development of cataracts has shown a pronounced age-related response during the first year after irradiation, and will be followed for two more years. In other studies, mice were exposed to single or fractionated doses of 12C ions (4-cm spread-out Bragg peak; dose-averaged LET infinity = 70-80 keV/micrometer) or 60Co gamma-photons (LET infinity = 0.3 keV/micrometer). Measurements of the frequency of posterior lens opacification have shown that the tissue sparing observed with dose fractionation of gamma-photons was absent when 12C-ion doses were fractionated. Development of posterior lens cataracts was also followed for long periods (up to 21 months) in mice exposed to single doses of Bragg plateau HZE particles (40Ar, 20Ne and 12C ions: LET infinity approximately equals 100, 30 and 10 keV/micrometer, respectively) or 225 kVp X-rays. Based on average cataract levels at the different observation times, the RBE's (RBE = relative biological effectiveness) for the ions were circa 5, 3 and 1-2, respectively, over the range of doses used (0.05-0.9 Gy). Investigations of cataractogenesis are useful for exploring the model of radiation damage proposed by Casarett and by Rubin and Casarett with a tissue not connected directly to the vasculature.  相似文献   

16.
It can be noted that it is not simple double strand breaks (dsb) but the non-reparable breaks that are associated with high biological effectiveness in the cell killing effect for high LET radiation. Here, we have examined the effectiveness of fast neutrons and low (initial energy = 12 MeV/u) or high (135 MeV/u) energy charged particles on cell death in 19 mammalian cell lines including radiosensitive mutants. Some of the radiosensitive lines were deficient in DNA dsb repair such as LX830, M10, V3, and L5178Y-S cells and showed lower values of relative biological effectiveness (RBE) for fast neutrons if compared with their parent cell lines. The other lines of human ataxia-telangiectasia fibroblasts, irs 1, irs 2, irs 3 and irs1SF cells, which were also radiosensitive but known as proficient in dsb repair, showed moderated RBEs. Dsb repair deficient mutants showed low RBE values for heavy ions. These experimental findings suggest that the DNA repair system does not play a major role against the attack of high linear energy transfer (LET) radiations. Therefore, we hypothesize that a main cause of cell death induced by high LET radiations is due to non-reparable dsb, which are produced at a higher rate compared to low LET radiations.  相似文献   

17.
The genetic risks associated with manned space flight are judged to be of little significance to the general population. The risks may be significant to the irradiated individual, particularly if one focuses attention on the incidence of dominant and chromosomal mutations that are expressed in the first generation offspring. Even so, the risk is not increased to a great extent by the low linear energy transfer (LET) component of the space radiations. It is the presumed high LET component, neutrons especially, that would make the major contribution to the risk, because the relative biological effectiveness (RBE) values for this component, relative to low dose-rate photon irradiation, are between 10 and 40, depending upon the particular genetic effect and dose-rate comparison. The appropriate RBE value would probably be 20 or greater, so that even small neutron doses become magnified in their contribution. Under the assumed condition of protracted exposure to 8 rads of low LET radiation and 2 rads of high LET radiation, or from 48 to 88 rem, the individual's risk of transmitting a new dominant mutation that will be expressed in his immediate offspring is estimated to increase by at least 4% and as much as about 40%. The HZE-particle component is not expected to make a significant contribution to the total risk.  相似文献   

18.
Experimental data on molecular mechanisms are essential for understanding the bioeffects of radiation and for developing biophysical models, which can help in determining the shape of dose-response curves at very low doses, e.g., doses less than 1 cGy. Although it has been shown that ionizing radiation can cause neoplastic cell transformation directly, that high-LET heavy ions in general can be more effective than photons in transforming cells, and that the radiogenic cell transformation is a multi-step process [correction of processes], we know very little about the molecular nature of lesions important for cell transformation, the relationship between lethal and transformational damages, and the evolution of initial damages into final chromosomal aberrations which alter the growth control of cells. Using cultured mouse embryo cells (C3H10T1/2) as a model system, we have collected quantitative data on dose-response curves for heavy ions with various charges and energies. An analysis of these quantitative data suggested that two DNA breaks formed within 80 angstroms may cause cell transformation and that two DNA breaks formed within 20 angstroms may be lethal. Through studies with restriction enzymes which produce DNA damages at specific sites, we have found that DNA double strand breaks, including both blunt- and cohesive-ended breaks, can cause cell transformation in vitro. These results indicate that DNA double strand breaks can be important primary lesions for radiogenic cell transformation and that blunt-ended double strand breaks can form lethal as well as transformational damages due to misrepair or incomplete repair in the cell. The RBE-LET relationship is similar for HGPRT gene mutation, chromosomal deletion, and cell transformation, suggesting common lesions may be involved in these radiation effects. The high RBE of high-LET radiation for cell killing and neoplastic cell transformation is most likely related to its effectiveness in producing DNA double strand breaks in mammalian cells. At present the role of oncogenes in radiation cell transformation is unclear.  相似文献   

19.
In heavy ion radiotherapy and space travel humans are exposed to energetic heavy ions (C, Si, Fe and others). This type of irradiation often produces more severe biological effects per unit dose than more common X-rays. A new Monte Carlo model generates a physical space with the complex geometry of human tissue or a cell culture based model of tissue, which is affected by the passage of ionizing radiation. For irradiation, the model relies on a physical code for the ion track structure; for tissues, cellular maps are derived from two- or three-dimensional confocal microscopy images using image segmentation algorithm, which defines cells as pixilated volumes. The model is used to study tissue-specific statistics of direct ion hits and the remote ion action on cells. As an application of the technique, we considered the spatial pattern of apoptotic cells after heavy ion irradiation. The pattern of apoptosis is modeled as a stochastic process, which is defined by the action cross section taken from available experimental data. To characterize the degree of apoptosis, an autocorrelation function that describes the spatial correlation of apoptotic cells is introduced. The values of the autocorrelation function demonstrate the effect of the directionality of the radiation track on the spatial arrangements of inactivated cells in tissue. This effect is intrinsic only to high linear-energy-transfer radiation.  相似文献   

20.
It is shown that the RBE of the 70 GeV proton secondary radiation for the induction of single-strand break is 1.6-7.6 in Chinese hamster fibroblasts and 1.04-3.8 in limphoid cells and for the lethality of Chinese hamster cells 1.14-1.7. The RBE value increases with decreasing dose of the secondary radiation. On post-irradiation incubation of mammalian cells at 37 degrees C, single-strand breaks induced by the secondary radiation are repaired with the sane time course as those induced by gamma-rays. In our earlier works we have made an attempt to estimate the biological efficiency of radiation generated by the 70 GeV protons on bacteria, phage T4 and Vicia faba beans. The obtained values of the relative biological efficiency (RBE) of this radiation varied between 1.4 and 5.5, depending on the object, criterion of estimation, times of registration and other experimental conditions. The aim of the present work is to estimate the biological efficiency of synchrotron radiation by its effect on mammalian cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号