首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Breadboard Project: a functioning CELSS plant growth system.   总被引:1,自引:0,他引:1  
The primary objective of the Breadboard project for the next 3-4 years is to develop, integrate and operate a Controlled Ecological Life Support System (CELSS) at a one person scale. The focus of this project over the past two years has been the development of the plant growth facility, the first module of the CELSS. The other major modules, food preparation, biomass processing, and resource recovery, have been researched at the laboratory scale during the past two years and facilities are currently under construction to scale-up these modules to an operational state. This paper will outline the design requirements for the Biomass Production Chamber (BPC), the plant growth facility for the project, and the control and monitoring subsystems which operate the chamber and will present results from both engineering and biological tests of the facility. Three production evaluations of wheat, conducted in the BPC during the past year, will be described and the data generated from these tests discussed. Future plans for the BPC will be presented along with future goals for the project as the other modules become active.  相似文献   

2.
3.
The Biomass Production Chamber (BPC) at the Kennedy Space Center is part of the Controlled Ecological Life Support System (CELSS) Breadboard Project. Plants are grown in a closed environment in an effort to quantify their contributions to the requirements for life support. Performance of this system is described. Also, in building this system, data from component and subsystem failures are being recorded. These data are used to identify problem areas in the design and implementation. The techniques used to measure the reliability will be useful in the design and construction of future CELSS. Possible methods for determining the reliability of a green plant, the primary component of a CELSS, are discussed.  相似文献   

4.
The Biomass Production Chamber (BPC) located at Kennedy Space Center, FL, USA provides a large (20 m2 area, 113 m3 vol.), closed environment for crop growth tests for NASA's Controlled Ecological Life Support System (CELSS) program. Since the summer of 1988, the chamber has operated on a near-continuous basis (over 1200 days) without any major failures (excluding temporary power losses). During this time, five crops of wheat (64-86 days each), three crops of soybean (90 to 97 days), five crops of lettuce (28-30 days), and four crops of potato (90 to 105 days were grown, producing 481 kg of dry plant biomass, 196 kg edible biomass, 540 kg of oxygen, 94,700 kg of condensed water, and fixing 739 kg of carbon dioxide. Results indicate that total biomass yields were close to expected values for the given light input, but edible biomass yields and harvest indices were slightly lower than expected. Stand photosynthesis, respiration, transpiration, and nutrient uptake rates were monitored throughout growth and development of the different crops, along with the build-up of ethylene and other volatile organic compounds in the atmosphere. Data were also gathered on system hardware maintenance and repair, as well as person-hours required for chamber operation. Future tests will include long-term crop production studies, tests in which nutrients from waste treatment systems will be used to grow new crops, and multi-species tests.  相似文献   

5.
Controlled Ecological Life Support Systems (CELSS) flight experimentation.   总被引:1,自引:0,他引:1  
The NASA CELSS program has the goal of developing life support systems for humans in space based on the use of higher plants. The program has supported research at universities with a primary focus of increasing the productivity of candidate crop plants. To understand the effects of the space environment on plant productivity, the CELSS Test Facility (CTF) has been been conceived as an instrument that will permit the evaluation of plant productivity on Space Station Freedom. The CTF will maintain specific environmental conditions and collect data on gas exchange rates and biomass accumulation over the growth period of several crop plants grown sequentially from seed to harvest. The science requirements of the CTF will be described, as will current design concepts and specific technology requirements for operation in micro-gravity.  相似文献   

6.
Regenerative life support systems based on the use of biological material have been considered for inclusion in manned spacecraft since the early days of the United States space program. These biological life support systems are currently being developed by NASA in the Controlled Ecological Life Support System (CELSS) program. Because of the progress being achieved in the CELSS program, it is time to determine which space missions may profit from use of the developing technology. This paper presents the results of a study that was conducted to estimate where potential transportation cost savings could be anticipated by using CELSS technology for selected future manned space missions.

Six representative missions were selected for study from those included in NASA planning studies. The selected missions ranged from a low Earth orbit mission to those associated with asteroids and a Mars sortie. The crew sizes considered varied from four persons to five thousand. Other study parameters included mission duration and life support closure percentages, with the latter ranging from complete resupply of consumable life support materials to 97% closure of the life support system. The paper presents the analytical study approach and describes the missions and systems considered, together with the benefits derived from CELSS when applicable.  相似文献   


7.
8.
The quest to determine the maximum potential productivity of food crops is greatly benefitted by crop growth models. Many models have been developed to analyze and predict crop growth in the field, but it is difficult to predict biological responses to stress conditions. Crop growth models for the optimal environments of a Controlled Environment Life Support System (CELSS) can be highly predictive. This paper discusses the application of a crop growth model to CELSS; the model is used to evaluate factors limiting growth. The model separately evaluates the following four physiological processes: absorption of PPF by photosynthetic tissue, carbon fixation (photosynthesis), carbon use (respiration), and carbon partitioning (harvest index). These constituent processes determine potentially achievable productivity. An analysis of each process suggests that low harvest index is the factor most limiting to yield. PPF absorption by plant canopies and respiration efficiency are also of major importance. Research concerning productivity in a CELSS should emphasize: 1) the development of gas exchange techniques to continuously monitor plant growth rates and 2) environmental techniques to reduce plant height in communities.  相似文献   

9.
Any attempt to create LSS for practical applications must take into account the possibility of castastrophic consequences if the problem of LSS reliability and stability is not solved. An integrated conception of CELSS studies development as a possible way to increase its reliability is considered. The BIOS-4 facility project is developed in the context of the conception. Three principles of highly effective experimental CELSS facility design are proposed. Some details of BIOS-4 design and its exploitation features are presented.  相似文献   

10.
During the past 10 years, the main part of CELSS studies has concerned the exploration of limits of plant productivity. Very high yields were obtained in continuous and high lighting, without reaching any limit. Concepts of mineral nutrition were renewed. CELSS activities now induce a development in the techniques of image processing applied to plants in order to follow the growth, to detect stresses or diseases or to pilot harvesting robots. Notable efforts concern the development of sensors, the study of trace contaminants and the micro-organisms monitoring. In parallel, several instruments for plant culture in closed Systems were developed. The advantages of closure are emphasised in comparison with open flow systems. The concept of Artificial Ecosystems developed for space research is more and more taken into account by the scientific community. It is considered as a new tool to study basic and applied problems related to ecology and not especially concerned with space research.  相似文献   

11.
To obtain basic data on adequate air circulation to enhance plant growth in a closed plant culture system in a controlled ecological life support system (CELSS), an investigation was made of the effects of the air current speed ranging from 0.01 to 1.0 m s-1 on photosynthesis and transpiration in sweetpotato leaves and photosynthesis in tomato seedlings canopies. The gas exchange rates in leaves and canopies were determined by using a chamber method with an infrared gas analyzer. The net photosynthetic rate and the transpiration rate increased significantly as the air current speeds increased from 0.01 to 0.2 m s-1. The transpiration rate increased gradually at air current speeds ranging from 0.2 to 1.0 m s-1 while the net photosynthetic rate was almost constant at air current speeds ranging from 0.5 to 1.0 m s-1. The increase in the net photosynthetic and transpiration rates were strongly dependent on decreased boundary-layer resistances against gas diffusion. The net photosynthetic rate of the plant canopy was doubled by an increased air current speed from 0.1 to 1.0 m s-1 above the plant canopy. The results demonstrate the importance of air movement around plants for enhancing the gas exchange in the leaf, especially in plant canopies in the CELSS.  相似文献   

12.
A controlled ecological life-support system (CELSS) is required to sustain life for long-duration space missions. The challenge is preparing a wide variety of tasty, familiar, and nutritious foods from CELSS candidate crops under space environmental conditions. Conventional food processing technologies will have to be modified to adapt to the space environment. Extrusion is one of the processes being examined as a means of converting raw plant biomass into familiar foods. A nutrition-improved pasta has been developed using cowpea as a replacement for a portion of the durum semolina. A freeze-drying system that simulates the space conditions has also been developed. Other technologies that would fulfill the requirements of a CELSS will also be addressed.  相似文献   

13.
14.
A novel dielectric sensor technology has been developed for monitoring and control of plant nutrient delivery systems as part of NASA's Controlled Ecological Life Support System (CELSS) program. A unique measurement phenomenon was discovered in which the electrostatic field is shunted to a third terminal of the sensor, resulting in a much greater sensitivity to changes in the complex dielectric properties of the nutrient solution. Based on this phenomenon, a small, flexible, thin-film shunting dielectric sensor (SDS) was designed to provide low-frequency, non-invasive measurement of both the thickness and nutrient concentration of the layer of solution on a plant growth surface. Test results indicate a sensitivity of +/- 0.05mm in layer thickness while characterization of the ability to measure nutrient concentration continues. The development plan for this sensor is presented and other applications are discussed.  相似文献   

15.
Two sealed chambers were constructed, each measuring approximately 4.5 m x 3 m x 2.5 m (LxWxH). Heat exchangers and air handling components were integrated within the sealed environment. Construction materials were chosen to minimize off-gassing and oxidation. Acceptable materials included stainless steel, Teflon (TM), glass and Heresite (TM) or baked enamel coated metal parts. The glass-topped chambers have externally mounted microwave powered light sources providing minimum PAR at canopy level of 1000 micrometers m-2 s-1. Major gases (CO2, O2) were monitored. Other environmental variables relevant to plant production (humidity, temperature, nutrient solution) were monitored and controlled continuously. Typical environment control capability and system specifications are presented. The facility is described as a venue ideally suited to address specific research objectives in plant canopy light interception, such as the roles of novel microwave powered overhead and inner-canopy light sources for dense plant canopies. In addition, control of recycled hydroponic nutrient solutions and analysis of trace atmospheric hydrocarbons in the context of sealed environment life support can be concurrently monitored.  相似文献   

16.
Information about compositional changes in plants grown in controlled environments is essential for developing a safe, nutritious diet for a Controlled Ecomological Life-Support System (CELSS). Information now is available for some CELSS candidate crops, but detailed information has been lacking for soybeans. To determine the effect of environment on macronutrient and mineral composition of soybeans, plants were grown both in the field and in a controlled environment where the hydroponic nutrient solution, photosynthetic flux (PPF), and CO2 level were manipulated to achieve rapid growth rates. Plants were harvested at seed maturity, separated into discrete parts, and oven dried prior to chemical analysis. Plant material was analyzed for proximate composition (moisture, protein, lipid, ash, and carbohydrate), total nitrogen (N), nonprotein N (NPN), nitrate, minerals, amino acid composition, and total dietary fiber. The effect of environment on composition varied by cultivar and plant part. Chamber-grown plants generally exhibited the following characteristics compared with field-grown plants: 1) increased total N and protein N for all plant parts, 2) increased nitrate in leaves and stems but not in seeds, 3) increased lipids in seeds, and 4) decreased Ca:P ratio for stems, pods, and leaves. These trends are consistent with data for other CELSS crops. Total N, protein N, and amino acid contents for 350 ppm CO2 and 1000 ppm CO2 were similar for seeds, but protein N and amino acid contents for leaves were higher at 350 ppm CO2 than at 1000 ppm CO2. Total dietary fiber content of soybean leaves was higher with 350 ppm CO2 than with 1000 ppm CO2. Such data will help in selecting of crop species, cultivars, and growing conditions to ensure safe, nutritious diets for CELSS.  相似文献   

17.
Considerable technological progress has been made in the development of controlled environment facilities for plant growth. Although not all of the technology used for terrestrial facilities is applicable to space-based plant growth facilities, the information resident in the commercial organizations that market these facilities can provide a significant resource for the development of the plant growing component of a CELSS. In 1985, NASA initiated an effort termed the Centers for the Commercial Development of Space (CCDS). This program endeavors to develop cooperative research and technology development programs with industrial companies that capitalize on the strengths of industry-university working relationships. One of the these CCDSs, the Wisconsin Center for Space Automation and Robotics (WCSAR), deals with developing automated plant growth facilities for space, in cooperation with several industrial partners. Concepts have been developed with industrial partners for the irradiation, water and nutrient delivery, nutrient composition control and automation and robotics subsystems of plant growing units. Space flight experiments are planned for validation of the concepts in a space environment.  相似文献   

18.
CELSS technology, composed of various subsystems designed to stabilize the environment in closed space can be used to construct the Closed Ecology Experiment Facility. The Closed Ecology Experiment Facility has the character of an Environmental Time Machine. Many environmental researches of studies will, it is proposed, be conducted using this facility. The concept of Closed Ecology Experiment Facility is described, and several research items related to earth science potentially to be conducted using this facility are indicated. As an example of the application, an improved model of climate estimation is discussed.  相似文献   

19.
A large amount of inedible plant material composed primarily of the carbohydrate materials cellulose, hemicellulose, and lignin is generated as a result of plant growth in a Controlled Ecological Life-Support System (CELSS). Cellulose is a linear homopolymer of glucose, which when properly processed will yield glucose, a valuable sugar because it can be added directly to human diets. Hemicellulose is a heteropolymer of hexoses and pentoses that can be treated to give a sugar mixture that is potentially a valuable fermentable carbon source. Such fermentations yield desirable supplements to the edible products from hydroponically-grown plants such as rapeseed, soybean, cowpea, or rice. Lignin is a three-dimensionally branched aromatic polymer, composed of phenyl propane units, which is susceptible to bioconversion through the growth of the white rot fungus, Pluerotus ostreatus. Processing conditions, that include both a hot water pretreatment and fungal growth and that lead to the facile conversion of plant polysaccharides to glucose, are presented.  相似文献   

20.
Controlled ecological life support systems (CELSS) have been proposed to make long-duration manned space flights more cost-effective. Higher plants will presumably provide food and a breathable atmosphere for the crew. It has been suggested that imbalances between the CO2/O2 gas exchange ratios of the heterotrophic and autotrophic components of the system will inevitably lead to an unstable system, and the loss of O2 from the atmosphere. Ratio imbalances may be corrected by including a second autotroph with an appropriate CO2/O2 gas exchange ratio. Cyanothece sp. ATCC 51142 is a large unicellular N2-fixing cyanobacterium, exhibiting high growth rates under diverse physiological conditions. A rat-feeding study showed the biomass to be edible. Furthermore, it may have a CO2/O2 gas exchange ratio that theoretically can compensate for ratio imbalances. It is suggested that Cyanothece spp. could fulfill several roles in a CELSS: supplementing atmosphere recycling, generating fixed N from the air, providing a balanced protein supplement, and protecting a CELSS in case of catastrophic crop failure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号