首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
On the basis of numerical experiments, we have shown the principal possibility of long (more than 1 month) and extremely long (more than 1 year) orbit lifetime of technogenic microparticles with radii from 1 to 100 μm injected into the near-Earth space in highly elliptical orbits with low perigee, including the case of an orbit with parameters corresponding to the orbital parameters of the Molniya satellite. Calculations are performed taking into account the perturbing effect on the orbital microparticle motion in the near-Earth space of gravitational perturbation caused by the Earth’s polar oblateness, the solar pressure force (calculated using methods of the Mie theory), and the drag force of neutral component of the background gas under conditions of low, medium, and high levels of solar and geomagnetic activities.  相似文献   

2.
The Lorentz force acting on an electrostatically charged spacecraft in the Earth's magnetic field provides a new propellantless means for controlling a spacecraft's orbit. Assuming that the Lorentz force is much smaller than the gravitational force, the perturbation of a charged spacecraft's orbit by the Lorentz force in the Earth's magnetic field, which is simplified as a titled rotating dipole, is studied in this article. Our research starts with the derivation of the equations of motion in geocentric equatorial inertial Cartesian coordinates using Lagrange mechanics, and then derives the Gauss variational equations involving Lorentz-force perturbation using a set of nodal inertial coordinates as an intermediate step. Subsequently, the approximate averaged changes in classical orbital elements, including single-orbit-averaged and one-day-averaged changes, are obtained by employing orbital averaging. We have found that the approximate analytic one-day-averaged changes in semi-major axis, eccentricity, and inclination are nearly zero, and those in the other three angular orbital elements are affected by J2 and Lorentz-force perturbations. This characteristic is applied to model bounded relative orbital motion in the presence of the Lorentz force, which is termed Lorentz-augmented J2-invariant formation. The necessary condition for J2-invariant formation is derived when the chief spacecraft's reference orbit is either circular or elliptical. It is shown that J2-invariant formation is easier to implement if the deputy spacecraft is capable of establishing electric charge. All conclusions drawn from the approximate analytic solutions are verified by numerical simulation.  相似文献   

3.
Comparison of experimental data obtained from short (SDEF) and long duration exposure flights (LDEF) have recently led to results which will be significant for longer and/or repeated sojourn of man in space. Under orbital conditions biological stress and damage are induced in test subjects by cosmic radiation, especially the high energetic, densely ionizing component of heavy ions. Plant seeds were successful model systems for a biotest in studying the physiological damages and mutagenic effect caused by ionizing cosmic radiation in particular stem cells. Dosimetrically, the subdivision into charge- and Let-groups reveals the contribution of the intermediate group (LET = 350-1000 MeV/cm) due to the medium heavy ions (Z = 6-10). Their relative contribution increases with the lower inclination of the orbit of LDEF-1; on the other hand, the total fluence becomes higher with longer duration of the flight. The observed endpoints of the biological radiation damage hint at a correlation with particle dose rate rather than with the dose; additionally, data on shielding effects inside and outside the space craft and its exposure were gained from the different SDEF- and LDEF-missions.  相似文献   

4.
A large number of disturbances add to the main force exerted by Earth's gravitational field and affect the actual orbital trajectory of artificial satellites. They possess antennas with specific purposes, such as telecommunication systems operating at specific ranges of frequencies and radiated power. For instance, the antennas used in the GPS and INTELSAT satellites are quadrifilar helix and parabolic reflectors respectively. The radiation emitted by the antennas produces a radiation reaction force on the satellite making its orbital elements deviate from their expected values. Using a mathematical model for the radiation reaction force caused by the antenna, derived from the electromagnetic theory and the energy-momentum conservation law, the perturbation effects on the orbits of the GPS and INTELSAT satellites were studied. The numerical integrator used to solve the satellite equations of motion is based on the Runge–Kutta method of fourth and fifth orders. The theoretical model of antenna radiation reaction takes into account the satellite mass, antenna radiated power and maximum gain of the antenna.  相似文献   

5.
Possibility of orbit control using gravity gradient (GG) effects without any mass expulsion is discussed. For simplicity, a dumb-bell type satellite and circular orbits are mainly considered. It is shown that the GG effects can be applied to convert attitude torques into orbital torques and vice versa. In central gravitational force fields, maximum orbital torques or thrusts are available from the GG force when roll or pitch angle is ± π4 provided that the attitude angle is null when the dumb-bell axis coincides with the local vertical. Such external torques as geomagnetic or solar wind pressure can be utilized to maintain the ± π4 attitude, then the orbital torques are available forever. In non-central gravitational fields, without any external torque, the orbital radii of circular orbits can be increased by controlling the satellite attitude using electric energy. The use of the Earth's oblateness effects and the exterior Lunar potential is discussed.  相似文献   

6.
For estimating radiation risk in space flights it is necessary to determine radiation dose obtained by critical organs of a human body. For this purpose the experiments with human body models are carried out onboard spacecraft. These models represent phantoms equipped with passive and active radiation detectors which measure dose distributions at places of location of critical organs. The dosimetric Liulin-5 telescope is manufactured with using three silicon detectors for studying radiation conditions in the spherical tissue-equivalent phantom on the Russian segment of the International space station (ISS). The purpose of the experiment with Liulin-5 instrument is to study dynamics of the dose rate and particle flux in the phantom, as well as variations of radiation conditions on the ISS over long time intervals depending on a phase of the solar activity cycle, orbital parameters, and presence of solar energetic particles. The Liulin-5 dosimeter measures simultaneously the dose rate and fluxes of charged particles at three depths in the radial channel of the phantom, as well as the linear energy transfer. The paper presents the results of measurements of dose rate and particle fluxes caused by various radiation field components on the ISS during the period from June 2007 till December 2009.  相似文献   

7.
For a two-layer model of the Moon that consists of a solid nonspherical mantle and an ellipsoidal homogeneous liquid core, a theory of forced librations under the effect of gravitational Earth’s moments has been developed. The motion of the Moon over its orbit has been described by the high-accuracy theory of DE/LE-4 orbital motion. Tables have been constructed that present forced librations of the Moon caused by the second harmonic of its force function, in the neighborhood of its motion according to the generalized Cassini laws. Disturbances of the first-order with respect to dynamic compressions of the Moon and its core are obtained in analytical form for Andoyer variables and Poincare variables and for the projection of the angular velocity vector of Moon’s mantle rotation and the Poincare coordinate system (relative to which core’s liquid accomplishes simple motion) on its major central axes of inertia, as well as for the classical variables in the Moon libration theory, etc. Constructed tables of the forced librations theory give the amplitudes and periods of librations and combinations of arguments of the orbital motion theory that correspond to libration parameters. The interpretation of basic variations has been given and a comparison with the previous theories has been carried out, in particular with the modern empirical theory constructed based on the laser observation data.  相似文献   

8.
《Acta Astronautica》2007,60(8-9):752-762
A study of the evolution and optical detectability of a fragmentation debris cloud in geosynchronous orbit has been carried out. The 1998 NASA breakup model has been used to generate orbit data for 95 fragments larger than 10 cm size from a 1000 kg satellite. The orbital evolution of these fragments is studied using a precision numerical propagator, employing a high-fidelity force model. Although the fragments rapidly disperse throughout the geostationary arc, they remain localised in right ascension of ascending node and inclination, and are driven along a narrow inertial corridor by luni-solar perturbations. The ESA PROOF software is used to study the detectability of the fragments using a 1- and 0.5-m telescope design. The 1-m telescope can detect 82% of the fragments (down to 13 cm in size) whilst the 0.5-m telescope can detect 39% of the fragments (down to 30 cm size). Due to the large along-track spread of the fragments, a time limit of 1-month post-breakup can be established for a space surveillance system to catalogue the breakup fragments. After this time the angular separation is such that the fragments disperse into the background population, and are no longer distinguishable as originating from a common breakup event.  相似文献   

9.
Results of modeling the time behavior of the D st index at the main phase of 93 geomagnetic storms (?250 < D st ≤ ?50 nT) caused by different types of solar wind (SW) streams: magnetic clouds (MC, 10 storms), corotating interaction regions (CIR, 31 storms), the compression region before interplanetary coronal ejections (Sheath before ICME, 21 storms), and “pistons” (Ejecta, 31 storms) are presented. The “Catalog of Large-Scale Solar Wind Phenomena during 1976–2000” (ftp://ftp.iki.rssi.ru/pub/omni/) created on the basis of the OMNI database was the initial data for the analysis. The main phase of magnetic storms is approximated by a linear dependence on the main parameters of the solar wind: integral electric field sumEy, dynamic pressure P d , and fluctuation level sB in IMF. For all types of SW, the main phase of magnetic storms is better modeled by individual values of the approximation coefficients: the correlation coefficient is high and the standard deviation between the modeled and measured values of D st is low. The accuracy of the model in question is higher for storms from MC and is lower by a factor of ~2 for the storms from other types of SW. The version of the model with the approximation coefficients averaged over SW type describes worse variations of the measured D st index: the correlation coefficient is the lowest for the storms caused by MC and the highest for the Sheath- and CIR-induced storms. The model accuracy is the highest for the storms caused by Ejecta and, for the storms caused by Sheath, is a factor of ~1.42 lower. Addition of corrections for the prehistory of the development of the beginning of the main phase of the magnetic storm improves modeling parameters for all types of interplanetary sources of storms: the correlation coefficient varies within the range from r = 0.81 for the storms caused by Ejecta to r = 0.85 for the storms caused by Sheath. The highest accuracy is for the storms caused by MC. It is, by a factor of ~1.5, lower for the Sheath-induced storms.  相似文献   

10.
常志巧  胡小工  杜兰  郭睿  何峰  李晓杰  王琰  董恩强 《宇航学报》2016,37(11):1298-1303
为统一北斗三类卫星的历书拟合算法,提出基于第二类无奇点根数进行历书参数设计的方法,设计了以倾角向量变率作为摄动参数的历书参数模型,并给出新的历书模型的用户使用算法。利用覆盖2013年全年的实际在轨卫星的数值轨道进行了历书拟合试验。结果表明,地球静止轨道(GEO)和倾斜地球同步轨道(IGSO)卫星的拟合位置误差为2~4km,拟合用户距离误差(URE)约为1km,中圆地球轨道(MEO)卫星的拟合位置误差为1~2km,拟合URE约为500m。通过分析6个轨道根数和2个摄动参数全年的变化范围,对新历书模型进行量化单位和占用比特位的通信接口设计,定量分析量化单位对历书表达精度的影响。结果表明,参数截断后对位置误差的影响小于50m,对URE误差的影响小于5m。因此,历书量化误差对信号捕获以及首次定位时间带来的影响可以忽略不计。  相似文献   

11.
C.S. Anitha  R.K. Sharma 《Acta Astronautica》2011,68(11-12):1865-1871
A non-singular analytical theory for the motion of high eccentricity satellite orbits under the influence of air drag is developed in terms of the Uniformly Regular Kustaanheimo and Stiefel (URKS) canonical elements, by assuming the atmosphere to be oblate with variation of density scale height with altitude. The series expansions include up to fourth-order terms of an independent variable Δ=λ2 (function of eccentric anomaly) and c (a small parameter dependent on the flattening of the atmosphere). Only two of the nine equations are solved analytically due to symmetry in the equations of motion. Comparison of the important orbital parameters semi-major axis and eccentricity up to 1000 revolutions, obtained with the present analytical solution and the KS theory, shows the superiority of the present solution over the KS elements analytical solution. The theory can be used effectively for the orbital decay of aero-assisted orbital transfer orbits during mission planning.  相似文献   

12.
Within observational constraints and analytic orbit determinations, potential NEO hazards and mitigations are characterized in terms of orbit displacements to establish (arbitrary) “safe” closest approach distances and corresponding energies that must be externally applied to achieve appropriate orbit displacements from the Earth. Required orbital velocity changes depend on projected closest Earth approach distances and time to (near) impact. Energy to achieve orbital displacement depends on NEO mass, required orbital velocity change, and the energy–momentum coupling coefficient. Errors in these parameters introduce uncertainties into hazard index and mitigation procedures. Hazard avoidance levels and mitigation indices for nine near-Earth asteroids, including 1997 XF11 and 1999 AN10, with non-zero Earth-impact probabilities are computed as examples of the proposed methodology, generating insight into the dilemma of predicting near impacts. This zeroth order approximation should not be construed as solving an orbital mechanics problem, nor establishing a particular set of criteria for mitigation action, but rather as a “survival index”.  相似文献   

13.
We have reconstructed the uncontrolled rotational motion of the Progress M-29M transport cargo spacecraft in the single-axis solar orientation mode (the so-called sunward spin) and in the mode of the gravitational orientation of a rotating satellite. The modes were implemented on April 3–7, 2016 as a part of preparation for experiments with the DAKON convection sensor onboard the Progress spacecraft. The reconstruction was performed by integral statistical techniques using the measurements of the spacecraft’s angular velocity and electric current from its solar arrays. The measurement data obtained in a certain time interval have been jointly processed using the least-squares method by integrating the equations of the spacecraft’s motion relative to the center of mass. As a result of processing, the initial conditions of motion and parameters of the mathematical model have been estimated. The motion in the sunward spin mode is the rotation of the spacecraft with an angular velocity of 2.2 deg/s about the normal to the plane of solar arrays; the normal is oriented toward the Sun or forms a small angle with this direction. The duration of the mode is several orbit passes. The reconstruction has been performed over time intervals of up to 1 h. As a result, the actual rotational motion of the spacecraft relative to the Earth–Sun direction was obtained. In the gravitational orientation mode, the spacecraft was rotated about its longitudinal axis with an angular velocity of 0.1–0.2 deg/s; the longitudinal axis executed small oscillated relative to the local vertical. The reconstruction of motion relative to the orbital coordinate system was performed in time intervals of up to 7 h using only the angularvelocity measurements. The measurements of the electric current from solar arrays were used for verification.  相似文献   

14.
We present the characteristics of short (duration less than 1 min) increases of the counting rate of electrons with energies >0.08 MeV observed in low-latitude (L < 2.0) regions of near-Earth space in the course of the GRIF experiment on the Spektr module of the Mir orbital station. The measurements were carried out using a set of instruments including X-ray and gamma-ray spectrometers, as well as detectors of electrons, protons, and nuclei with large and small geometrical factors, which allowed one to detect the fluxes of charged particles both in the region of the Earth’s radiation belts and in regions close to the geomagnetic equator. As a result of more than 1.5 years of observation, it is demonstrated that short increases in the intensity of electrons of subrelativistic energies are detected not only in the regions of the near-Earth space known as “precipitation zones” (1.7 < L < 2.5), but in high-latitude regions (up to the geomagnetic equator, L < 1.1) as well. Two types of increases of the electron counting rate are found: either fairly regular increases repeating on successive orbits or increases local in time. The latter type of increases can be caused by a short enhancement of electron flux on a given drift shell. The results of our measurements have shown that the duration of the detected increases in intensity can be rather short, as little as 20–30 s. Therefore, in the case of large amplitudes, such increases of the counting rate of electrons can imitate astrophysical events of the type of cosmic gamma-ray bursts in the detectors of hard X-ray and gamma radiation.  相似文献   

15.
The results of refining the parameters of the Spektr-R spacecraft (RadioAstron project) motion after it was launched into the orbit of the Earth’s artificial satellite in July 2011 showed that, at the beginning of 2013, the condition of staying in the Earth’s shadow was violated. The duration of shading of the spacecraft exceeds the acceptable value (about 2 h). At the end of 2013 to the beginning of 2014, the ballistic lifetime of the spacecraft completed. Therefore, the question arose of how to correct the trajectory of the motion of the Spektr-R satellite using its onboard propulsion system. In this paper, the ballistic parameters that define the operation of onboard propulsion system when implementing the correction, and the ballistic characteristics of the orbital spacecraft motion before and after correction are presented.  相似文献   

16.
E.H. Lemke 《Acta Astronautica》1985,12(11):907-914
We describe the motion of a material point that is attracted by a tall, homogeneous cylinder. The cylinder moves on a circular orbit and points in the radial direction. The finite solution can be expanded in powers of two small parameters: the initial eccentricity of the orbital motion about the cylinder and the coupling parameter of the Coriolis force. Such expansions are given for the case of the indifferent longitudinal location. Solutions periodic in the polar angle are constructed. We do not find resonance effects or other large cumulative amplitude variations that might be due to the gravity-gradient and Coriolis force.  相似文献   

17.
The results of studying vibration microaccelerations aboard the International Space Station are presented. The study was performed using the measurement data of the MAMS low-frequency and the SAMS high-frequency accelerometers. For the study, six intervals of measurements were selected, performed in 2005. During these intervals the station was flying in the standard orbital orientation, attitude control engines were not switched on, and the crew rested. Discrete and continuous spectra were analyzed on selected intervals. The most significant disturbances with the discrete spectrum (cyclic trends) have been found. Using the second order autoregression model, parameters of the most significant disturbances with the continuous spectrum were determined. This study was carried out as a part of the technical experiment “The ISS environment”.  相似文献   

18.
An algorithm for studying the families of symmetric periodic orbits using their generating solutions, whose structure was presented in the first part of this paper [1], is described. The algorithm is essentially based on symmetry of the generating solution and on its initial approximation. More than 20 new families of symmetric periodic solutions of the Hill’s problem have been found and investigated with the use of this algorithm. The families including trajectories for orbital injection into the vicinity of collinear libration points L 1,2 are described.  相似文献   

19.
Results of in-flight tests of three modes of uncontrolled attitude motion of the Progress spacecraft are described. These proposed modes of experiments related to microgravity are as follows: (1) triaxial gravitational orientation, (2) gravitational orientation of the rotating satellite, and (3) spin-up in the plane of the orbit around the axis of the maximum moment of inertia. The tests were carried out from May 24 to June 1, 2004 onboard the spacecraft Progress M1-11. The actual motion of this spacecraft with respect to its center of mass, in the above-mentioned modes, was determined by telemetric information about an electric current tapped off from solar batteries. The values of the current obtained during a time interval of several hours were processed jointly using the least squares method by integration of the equations of the spacecraft’s attitude motion. The processing resulted in estimation of the initial conditions of motion and of the parameters of mathematical models used. For the obtained motions the quasi-static component of microaccelerations was computed at a point onboard, where installation of experimental equipment is possible.  相似文献   

20.
《Acta Astronautica》2010,66(11-12):1826-1830
This paper examines the possibility of regular orbital corrections for a satellite controlled by an impulsive force applied along the induction vector of the local geomagnetic field. The main purpose of the correcting considered in the paper is to eliminate the drift in secular variation of the relative orbital parameters over the orbital period. The obtained results are applied to the formation flying problem. The developed method is tested using numerical simulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号