共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A. D. Fokker 《Space Science Reviews》1963,2(1):70-90
Conclusion We have got a reasonably clear idea of the various forms under which the type IV continuum emission may appear. Also we can imagine what kind of processes come into play during a type IV event. But the insight gained so far applies to the general case. Individual cases are widely different, and we are still far from understanding why a given event behaves as it does. For instance, why are metric responses lacking at a certain big microwave outburst, or why is the decimetric component particularly strong or prolonged on certain occasions? One can imagine that such questions would receive an answer if one were allowed to see the configuration of magnetic lines of force above the activity region !Does the type IV event tell us a fine story of the interplay of energetic particles and streams of particles with coronal magnetic fields ? Maybe the story would be a fine one if the language could be understood. At present we know only a few words of it; for this reason to us the story is very fragmentary. First of all, however, the message should be recorded far more completely than has been done so far. The number of observations that should be made of one and the same event is tremendous; the program comprises:1) spectral observations from 1000 Mc/s down to the lowest frequencies; 2) single frequency observations at a great many wavelengths covering the whole radio spectrum; 3) measurements of polarization and 4) determinations of position and angular extent in at least every octave of the whole radio spectrum.Especially as regards the latter two points, the present situation is still very unsatisfactory, though good work has been done already in Japan. The realization of a complete recording of phenomena during a type IV event calls for a combined effort of several observatories.Very encouraging are the established relations between solar type IV events and terrestrial phenomena. From an analysis of solar cosmic ray events as recorded on several places on the earth, interesting inferences have been drawn regarding the travelling conditions of particles in interplanetary space (cf.
Carmichael, 1962). Likewise, one may expect interesting information on the behaviour of interplanetary particle clouds of solar origin from (interferometric) observations of decametric radio emission on the occasion of type IV events.The occurrence of a major type IV event enables forecasters to predict successfully geomagnetic and ionospheric storms. Type IV events will determine at what times certain space research experiments will be launched in the next solar cycle. One should like to be able to indicate the probability for the occurrence of type IV solar radio flares themselves. It is known that these flares generally occur in complex sunspot groups; but a complex sunspot group does not of necessity imply the occurrence of a type IV flare. Observations of coronal condensations at microwave frequencies with a high resolution interferometer may help sorting out those centres of activity that are most likely to produce type IV flares. 相似文献
3.
Type III solar radio bursts have been observed from 10 MHz to 10 kHz by satellite experiments above the terrestrial plasmasphere. Solar radio emission in this frequency range results from excitation of the interplanetary plasma by energetic particles propagating outward along open field lines over distances from 5 R
to at least 1 AU from the Sun. This review summarizes the morphology, characteristics and analysis of individual as well as storms of bursts. Substantial evidence is available to show that the radio emission is observed at the second harmonic instead of the fundamental of the plasma frequency. This brings the density scale derived by radio observations into better agreement with direct solar wind density measurements at 1 AU and relaxes the requirement for type III propagation along large density-enhanced regions. This density scale with the measured direction of arrival of the radio burst allows the trajectory of the exciter path to be determined from 10 R
to 1 AU. Thus, for example, the dynamics and gross structure of the interplanetary magnetic field can be investigated by this method. Burst rise times are interpreted in terms of exciter length and dispersion while decay times refer to the radiation damping process. The combination of radio observations at the lower frequencies and in-situ measurements on non-relativistic electrons at 1 AU provide data on the energy range and efficiency of the wave-particle interactions responsible for the radio emission. 相似文献
4.
The paper presents facts of relevance for flare particle acceleration and shock wave excitation in the solar corona from a detailed analysis of meter wave (40–800 MHz OSRA Tremsdorf spectrograms) and microwave data (3.1–50 GHz polarimeter records Bern University) of several type IV bursts. We argue for a slowly uprising (about 0.1 of the local Alfvén speed) quasi-periodically acting (1...3 min period) accelerator in the 1011...109 cm–3 density region. It produces particles emitting patches of fragmented decimetric/metric radio emission. One of the quasi-periodically appearing patches is associated with the microwave burst emission, the same (or a later, lower frequency one) immediately preceeds the meter wave type II burst lanes. Therefore the onset of the patch source seems to induce also the MHD-like disturbance which can steepen to the type II burst emitting shock. In some events the fragmented patches in the frequency-time plane show a linear spreading toward lower and higher frequencies. This can be a signature of an accelerated movement. Our interpretation of the data allows to understand some of the timing and location problems between the type II shockfront and other CME or flare components. 相似文献
5.
Dean F. Smith 《Space Science Reviews》1974,16(1-2):91-144
The observations of type-III solar radio bursts are briefly reviewed to set requirements on a model for their interpretation. The most important of these requirements is that the source must be an electron stream which is in a state of continuous quasilinear relaxation and which initially must have a nearly monotonically decreasing velocity distribution. The problem of constructing a model is broken into three parts: (1) The plasma wave source which depends on the interaction of the electron stream with electron plasma waves. (2) The radiation source which depends on the interaction of plasma waves and transverse electromagnetic waves or in a magnetized plasma the ordinary and extraordinary modes of magnetoionic theory. (3) The propagation of radiation between the source and the observer which depends on the transmission of radiation through a scattering refracting absorbing magnetized plasma.Progress on a model for the plasma wave source is reviewed and it is concluded that no existing models are adequate. The equations which would lead to an adequate model are written down, but not solved. These include, in addition to collisional damping, Landau damping both by the exciting stream and the background plasma, and spontaneous and induced processes for a three-dimensional distribution of plasma waves. Possible limitations to a quasilinear approach such as pile-up of plasma waves and nonlinear effects are considered. Processes which affect the gross structure of the source such as electron trajectories in coronal streamers and electron scattering by inhomogeneities are reviewed.Progress on the radiation source is considered both in the absence and presence of a magnetic field. At high frequencies (e.g., 80 MHz) observations of radiation near the fundamental and second harmonic of the plasma frequency allow a unique determination of source size and the energy density in plasma waves within the uncertainties of geometry by source ray tracing. This determination is extremely critical because the fundamental must be amplified and thus production of the fundamental is effectively a much more highly nonlinear process than production of the second harmonic. At low frequencies (e.g., 500 kHz) the second harmonic is shown to be dominant because amplification of the fundamental becomes an inefficient process.Calculations of scattering of radiation in a random medium are reviewed. It is concluded that these are adequate at high and low frequencies, but have not been carried out properly at intermediate frequencies where amplification of the fundamental may still be present. It is shown in particular that when scattering is taken into account at high frequencies all observations can be explained by isotropic emission near the second harmonic. At low frequencies the nature of the scatterers is determined by source occultations unlike the case at high frequencies where these are free parameters. This fact allows the possibility of determining true source sizes at low frequencies by subtracting out the contribution due to scattering. A mechanism for producing the possibly observed linear or highly elliptical polarization of type-III bursts, which must be imposed far from the source due to Faraday rotation, is reviewed.Finally, the questions of what remains to be done and what we can hope to obtain upon completion of this work are briefly considered.The National Center for Atmospheric Research is sponsored by the National Science Foundation. 相似文献
6.
Type II, III, and continuum solar radio events, as well as intense terrestrial magnetospheric radio emissions, were observed at low frequencies (10 MHz to 30 kHz) by the IMP-6 satellite during the period of high solar activity in August 1972. This review covers briefly the unique direction finding capability of the experiment, as well as a detailed chronology of the low frequency radio events, and, where possible, their association with both groundbased radio observations and solar flares. The attempted observation of solar bursts in the presence of intense magnetospheric noise may, as illustrated, lead to erroneous results in the absence of directional information. The problem of assigning an electron density scale and its influence on determining burst trajectories is reviewed. However, for the disturbed conditions existing during the period in question, we feel that such trajectories cannot be determined accurately by this method. In conclusion, the capabilities, limitations, and observing programs of present and future satellite experiments are briefly discussed. 相似文献
7.
Wolfgang Kundt 《Space Science Reviews》1994,68(1-4):357-362
25 years after their discovery, pulsars still pose fundamental problems, in particular when the whole range of their periodsP is considered: 1.56 ms P0.09 s. This communication reviews my understanding of the pulsar magnetosphere, windzone, and (coherent) radio emission. New are details of the preferred magnetic structure, wind generation, and amplification of the emitted (pseudo) curvature radiation, the inferred brightness of which exceeds that of all other terrestrial and astrophysical sources by many orders of magnitude. 相似文献
8.
D. B. Melrose 《Space Science Reviews》1994,68(1-4):159-170
The theory of electron cyclotron maser emission and its application to solar spike bursts are reviewed. By analogy with the Earth's AKR, three sources of free energy are considered: a loss-cone anisotropy, a velocity-space hole, and a trapped distribution. The problem of how the radiation escapes through the second harmonic absorption layer is emphasized. Harmonic emission due to z mode coalescence may operate for some bursts, but the 2–5s delay between hard X-ray bursts and spike bursts suggests that some other mechanisms is required for most spike bursts. A model involving formation of a trapped distribution in low-density regions neighboring the flaring flux tube is considered. 相似文献
9.
We analyze two solar type III radio bursts that were observed simultaneously by the ICE and Ulysses spacecraft. Both bursts originated behind the solar limb as viewed from either spacecraft. At the time of these events, ICE was in the ecliptic plane at 1 AU and Ulysses was 35° south of the ecliptic plane at 4 AU. For one event on 931117, the ratios of the peak flux densities measured at each spacecraft, at each observing frequency, were consistent with the most probable source locations relative to ICE and Ulysses. The second event on 931004 was a complex burst consisting of two distinct components at high frequencies. At low frequencies, the intensity of the first component decreased rapidly at each spacecraft. The second component, however, dominated the low frequency emission observed at Ulysses but not at ICE. These differences in the observed radiation must be related to the different viewing geometries of the two spacecraft. The measured onset times as a function of observing frequency were consistent with a constant exciter speed through the interplanetary medium and suggest that there are significant propagation delays, especially for the radiation propagating within the ecliptic plane. 相似文献
10.
The application of chaos theory has become popular to understand the nature of various features of solar activity because most of them are far from regular. The usual approach, however, that is based on finding low-dimensional structures of the underlying processes seems to be successful only in a few exceptional cases, such as in rather coherent phenomena as coronal pulsations. It is important to note that most phenomena in solar radio emission are more complex. We present two kinds of techniques from nonlinear dynamics which can be useful to analyse such phenomena:
- Fragmentation processes observed in solar spike events are studied by means of symbolic dynamics methods. Different measures of complexity calculated from such observations reveal that there is some order in this fragmentation.
- Bursts are a typical transient phenomenon. To study energization processes causing impulsive microwave bursts, the wavelet analysis is applied. It exhibits structural differences of the pre- and post-impulsive phase in cases where the power spectra of both are not distinct.
11.
James M. Cordes 《Space Science Reviews》1979,24(4):567-600
Our knowledge of radio pulsars is reviewed with particular emphasis on properties of radio emission that are relevant to an understanding of the emission mechanism. We discuss the tendency for emission to occur in two orthogonal modes of polarization, observational limits on the location of the emission region, and the issue of whether coherence is established by a broadband or a narrowband mechanism.Proceedings of the NASA/JPL Workshop on the Physics of Planetary and Astrophysical Magnetospheres. 相似文献
12.
In this review, we consider the central physical aspects pertinent to the acceleration of the solar wind. Special importance is placed on the high-speed streams since the properties of these structures seem to strain the various theoretical explanations the most. Heavy emphasis is also given to the observations — particularly as to what constraints they place on the theories. We also discuss certain sporadic events such as spicules, macrospicules, X-ray bright points, and outflows seen in the EUV associated with the explosive events, jets, and coronal bullets which could be of relevance to this problem.Three theoretical concepts pertaining to the solar wind acceleration process are examined — purely thermal acceleration with and without extended heating, acceleration due to Alfvén wave pressure, and diamagnetic acceleration. Emphasis is given to how well these theories meet the constraints imposed by the observations. Diamagnetism is argued to be a powerful ingredient in solar wind theory, both in the light of observed sporatic outflows seen in the chromosphere and transition region and also because of its effectiveness in increasing the flow speed and producing strong acceleration near the Sun in line with coronal hole observations. 相似文献
13.
G. Kanbach 《Space Science Reviews》1983,36(3):273-283
Synchrotron radio emission from interstellar space has long been recognized as a useful tool to probe into the galactic distribution of high energy electrons and magnetic fields. We first review the results obtained from the local (<2kpc distant) region of the Galaxy and conclude that the observed local synchrotron emissivity is consistently explained by the measured cosmic ray electron spectrum and the interstellar magnetic field if some reasonable assumptions are allowed. The large scale distribution of radio emissivity shows evidence for spiral structure and is likely to originate in two distinct disk systems: a thin disk (thickness 250 pc in the inner Galaxy) formed by population I objects which emits about 10% of the galactic radio luminosity and a thick disk (2.5 kpc thick in the inner Galaxy) which constitutes the truly diffuse emission and produces 90% of the total luminosity. 相似文献
14.
Type III radio bursts observed from high southern latitudes are analyzed for the first time. The continual observation of these radio bursts by Ulysses from after the Jupiter swing-by to 50°S latitude argues for a wide latitudinal directivity of type III radiation. From this high latitude perspective, type III radio sources that lie in the far hemisphere of the Sun with respect to Ulysses are unambiguously resolved for the first time. Using the Ulysses direction-finding capabilities, the radio source locations in the 3-D heliosphere are derived for a radio event on 31 January 1994 when Ulysses was 45°S latitude. The source locations describe a spiral-like trajectory originating from the far side of the Sun. The angular radii of these radio sources are compared to angular radii that were previously derived from in-ecliptic observations. 相似文献
15.
We report new calculations of transition radiation spectra which are correct for arbitrary energy of a particle at all frequencies down to plasma frequency. The importance of the emission mechanism for solar flares are discussed. 相似文献
16.
S. Gulkis 《Space Science Reviews》1973,14(3-4):497-510
The use of long-wavelength radio measurements of brightness temperature to remotely measure the thermal structure of the atmospheres of the major planets at great depths (>10 atm.) is discussed. Data are presented which show that the gross features of Jupiter's and Saturn's microwave spectra, as determined from ground based observations, can be explained in terms of thermal emission from ammonia in deep convective atmospheres of He and H2.This is one of the publications by the Science Advisory Group. 相似文献
17.
18.
N. Vilmer G. Trottet C. Barat J. P. Dezalay R. Talon R. Sunyaev O. Terekhov A. Kuznetsov 《Space Science Reviews》1994,68(1-4):233-238
We report here on preliminary results of a systematic study of fast temporal fluctuations in impulsive and extended solar X-ray bursts observed by PHEBUS at energies around 100 keV. Subsecond timescales are quite common in the impulsive events and are not observed in extended ones. 相似文献
19.
Ground-based observations of the variable solar radio emission ranging from few millimetres to decametres have been used here as a diagnostic tool to gain coherent phenomenological understanding of the great 2, 4 and 7 August, 1972 solar events in terms of dominant physical processes like generation and propagation of shock waves in the solar atmosphere, particle acceleration and trapping.The basic data used in this review have been collected by many workers throughout the world utilizing a variety of instruments such as fixed frequency radiometers, multi-element interferometers, dynamic spectrum analysers and polarimeters. Four major flares are selected for detailed analysis on the basis of their ability to produce energetic protons, shock waves, polar cap absorptions (PCA) and sudden commencement (SC) geomagnetic storms. A comparative study of their radio characteristics is made. Evidence is seen for the pulsations during microwave bursts by the mechanism similar to that proposed by McLean et al. (1971), to explain the pulsations in the metre wavelength continuum radiation. It is suggested that the multiple peaks observed in some microwave bursts may be attributable to individual flares occurring sequentially due to a single initiating flare. Attempts have been made to establish identification of Type II bursts with the interplanetary shock waves and SC geomagnetic storms. Furthermore, it is suggested that it is the mass behind the shock front which is the deciding factor for the detection of shock waves in the interplanetary space. It appears to us that more work is necessary in order to identify which of the three moving Type IV bursts (Wild and Smerd, 1972), namely, advancing shock front, expanding magnetic arch and ejected plasma blob serves as the piston-driver behind the interplanetary shocks. The existing criteria for proton flare prediction have been summarized and two new criteria have been proposed. Observational limitations of the current ground-based experimental techniques have been pointed out and a suggestion has been made to evolve appropriate observational facilities for solar work before the next Solar Maximum Year (SMY). 相似文献
20.