共查询到20条相似文献,搜索用时 0 毫秒
1.
J R Cronin 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1989,9(2):59-64
Carbonaceous chondrites, a class of primitive meteorite, have long been known to contain their complement of carbon largely in the form of organic, i.e., hydrocarbon-related, matter. Both discrete organic compounds and an insoluble, macromolecular material are present. Several characteristics of these materials provide evidence for their abiotic origin. The principal formation hypotheses have invoked chemistry occurring either in the solar nebula or on the parent body. However, recent stable isotope analyses of the meteorite carboxylic acids and amino acids indicate that they may be related to interstellar cloud compounds. These results suggest a formation scheme in which interstellar compounds were incorporated into the parent body and subsequently converted to the present suite of meteorite organics by the hydrothermal process believed to have formed the clay minerals of the meteorite matrix. 相似文献
2.
Amino acid synthesis from CO-N2 and CO-N2-H2 gas mixtures via complex organic compounds. 总被引:1,自引:0,他引:1
S Miyakawa K Kobayashi A B Sawaoka 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1999,24(4):465-468
Reaction among hydrogen cyanide (HCN), formaldehyde (H2CO) and ammonia (NH3) are generally considered an important reaction in amino acid synthesis by electric discharge. Precursors of glycine and aspartic acid were, however, synthesized by adding water to metastable complex compounds produced by quenching a CO-N2 high-temperature plasma. In order to investigate effects of water remaining in an experimental vacuum chamber, optical emission spectroscopic and mass spectrometric measurements were conducted with CO-N2 and CO-N2-H2 gas mixtures. Although residual hydrogen atoms were detected in the CO-N2 experiment, the amount of them was much less than that in the CO-N2-H2 experiment. 相似文献
3.
K Kobayashi T Kaneko T Saito 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1999,24(4):461-464
A wide variety of organic compounds, which are not simple organics but also complex organics, have been found in planets and comets. We reported that complex organics was formed in simulated planetary atmospheres by the action of high energy particles. Here we characterized the experimental products by using chromatographic and mass spectrometric techniques. A gaseous mixture of CO, N2 and H2O was irradiated with high energy protons (major components of cosmic rays). Water-soluble non-volatile substances, which gave amino acids after acid-hydrolysis, were characterized by HPLC and mass spectrometry. Major part of the products were complex compounds with molecular weight of several hundreds. Amino acid precursors were produced even when no water was incorporated with the starting materials. It was suggested that complex molecules including amino acid precursors were formed not in solution from simple molecules like HCN, but directly in gaseous phase. 相似文献
4.
W L Davis C P McKay S F Hynes 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1999,24(4):489-496
The detection of organics on Mars remains an important scientific objective. Advances in instrumentation and laboratory techniques provide new insight into the lower level detection limit of complex organics in closely packed media. Preliminary results demonstrate that algae present in a palagonite medium do exhibit a spectral reflectance feature in the visible range for dry mass weight ratios of algae to palagonite greater than 6%--which corresponds to 30 mg algae in a 470 mg (just optically thick (< 3 mm) layer) palagonite matrix. This signature most probably represents chlorophyll a, a light harvesting pigment with an emission peak at 678 nm. 相似文献
5.
R L Mancinelli A Banin 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1995,15(3):171-176
The primary physical factors important to life's evolution on a planet include its temperature, pressure and radiation regimes. Temperature and pressure regulate the presence and duration of liquid water on the surface of Mars. The prolonged presence of liquid water is essential for the evolution and sustained presence of life on a planet. It has been postulated that Mars has always been a cold dry planet; it has also been postulated that early mars possessed a dense atmosphere of CO2 (> or = 1 bar) and sufficient water to cut large channels across its surface. The degree to which either of these postulates is true correlates with the suitability of Mars for life's evolution. Although radiation can destroy living systems, the high fluxes of UV radiation on the martian surface do not necessarily stop the origin and early evolution of life. The probability for life to have arisen and evolved to a significant degree on Mars, based on the postulated ranges of early martian physical factors, is almost solely related to the probability of liquid water existing on the planet for at least hundreds of millions to billions of years. 相似文献
6.
M V Ivanov 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1995,15(3):215-221
We suggest a new interpretation of the data on so-called SNC meteorites and delta 13C values of the calcium carbonate minerals and organic matter discovered in them. The delta 13C value of calcite (up to 15 ppt) is accounted for by the microbial reaction CO2 + H2 ---> CH4 + H2O. Methane-forming bacteria also synthesize organic carbon (in the form of biomass) from CO2, and this process is accompanied by 12C fractionation. Therefore, the organic carbon of SNC meteorites is enriched with 12C (delta 13C as low as -35 ppt). The environmental conditions under which the calcite of SNC meteorites was formed were favorable for the activity of methanogens. 相似文献
7.
H P Klein D L DeVincenzi 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1995,15(3):151-156
Of all the other planets in the solar system, Mars remains the most promising for further elucidating concepts about chemical evolution and the origin of life. Strategies were developed to pursue three exobiological objectives for Mars exploration: determining the abundance and distribution of the biogenic elements and organic compounds, detecting evidence of an ancient biota on Mars, and determining whether indigenous organisms exist anywhere on the planet. The three strategies are quite similar and, in fact, share the same sequence of phases. In the first phase, each requires global reconnaissance and remote sensing by orbiters to select sites of interest for detailed in situ analyses. In the second phase, lander missions are conducted to characterize the chemical and physical properties of the selected sites. The third phase involves conducting "critical" experiments at sites whose properties make them particularly attractive for exobiology. These critical experiments would include, for example, identification of organics, detection of fossils, and detection of extant life. The fourth phase is the detailed analysis of samples returned from these sites in Earth-based laboratories to confirm and extend previous discoveries. Finally, in the fifth phase, human exploration is needed to establish the geological settings for the earlier findings or to discover and explore sites that are not accessible to robotic spacecraft. 相似文献
8.
J Koike T Oshima K Kobayashi Y Kawasaki 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1995,15(3):211-214
The ability of living organisms to survive extraterrestrial conditions has implications for the origins of life in the solar system. We have therefore studied the survival of viruses, bacteria, yeast, and fungi under simulated Martian conditions. The environment on Mars was simulated by low temperature, proton irradiation, ultraviolet irradiation, and simulated Martian atmosphere (CO2 95.46%, N2 2.7%, water vapor 0.03%) in a special cryostat. After exposure to these conditions, tobacco mosaic virus and spores of Bacillus, Aspergillus, Clostridium, and some species of coccus showed significant survival. 相似文献
9.
H. Cottin P. Coll D. Coscia N. Fray Y.Y. Guan F. Macari F. Raulin C. Rivron F. Stalport C. Szopa D. Chaput M. Viso M. Bertrand A. Chabin L. Thirkell F. Westall A. Brack 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2008
To understand the evolution of organic molecules involved in extraterrestrial environments and with exobiological implications, many experimental programs in the laboratory are devoted to photochemical studies in the gaseous phase as well as in the solid state. The validity of such studies and their applications to extraterrestrial environments can be questioned as long as experiments conducted in space conditions, with the full solar spectrum, especially in the short wavelength domain, have not been implemented. The experiments that are described here will be carried out on a FOTON capsule, using the BIOPAN facility, and on the International Space Station, using the EXPOSE facility. Vented and sealed exposition cells will be used, which will allow us to study the chemical evolution in the gaseous phase as well as heterogeneous processes, such as the degradation of solid compounds and the release of gaseous fragments. 相似文献
10.
11.
C Ponnamperuma R Navarro-González Y Honda 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1995,15(3):177-184
Although there is no direct evidence yet for the existence of life on Mars, it is reasonable to conclude that the emergence of life on Earth, which appears to have been controlled by universal laws of physics and chemistry, may have been repeated elsewhere in the universe. The dual approach of synthesis and analysis in our experimental studies has provided ample evidence in support of this hypothesis. 相似文献
12.
D E Schwartz R L Mancinelli M R White 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1995,15(3):193-197
An important question for exobiology is, did life evolve on Mars? To answer this question, experiments must be conducted on the martian surface. Given current mission constraints on mass, power, and volume, these experiments can only be performed using proposed analytical techniques such as: electron microscopy, X-ray fluorescence, X-ray diffraction, alpha-proton backscatter, gamma-ray spectrometry, differential thermal analysis, differential scanning calorimetry, pyrolysis gas chromatography, mass spectrometry, and specific element detectors. Using prepared test samples consisting of 1% organic matter (bovine serum albumin) in palagonite and a mixture of palagonite, clays, iron oxides, and evaporites, it was determined that a combination of X-ray diffraction and differential thermal analysis coupled with gas chromatography provides the best insight into the chemistry, mineralogy, and geological history of the samples. 相似文献
13.
D E Schwartz R L Mancinelli 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1989,9(6):155-158
Geologic and climatologic studies suggest that conditions on early Mars were similar to early Earth. Because life on Earth is believed to have originated during this early period (3.5 billion years ago), the Martian environment could have also been conducive to the origin of life. To investigate this possibility we must first define the attributes of an early Martian biota. Then, specific geographic locations on Mars must be chosen where life may have occurred (i.e. areas which had long standing water), and within these distinct locations search for key signatures or bio-markers of a possible extinct Martian biota. Some of the key signatures or bio-markers indicative of past biological activity on Earth may be applicable to Mars including: reduced carbon and nitrogen compounds, CO3(2-), SO4(2-), NO3-, NO2- [correction of NO2(2)], Mg, Mn, Fe, and certain other metals, and the isotopic ratios of C, N and S. However, we must also be able to distinguish abiotic from biologic origins for these bio-markers. For example, abiotically fixed N2 would form deposits of NO3- and NO2-, whereas biological processes would have reduced these to ammonium containing compounds, N2O, or N2, which would then be released to the atmosphere. A fully equipped Mars Rover might be able to perform analyses to measure most of these biomarkers while on the Martian surface. 相似文献
14.
J H Batten G W Stutte R M Wheeler 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1996,18(4-5):189-192
Atmospheres of enclosed environments in which 20 m2 stands of wheat, potato, and lettuce were grown were characterized and quantified by gas chromatography-mass spectrometry. A large number (in excess of 90) of volatile organic compounds (VOCs) were identified in the chambers. Twenty eight VOC's were assumed to be of biogenic origin for these were not found in the chamber atmosphere when air samples were analyzed in the absence of plants. Some of the compounds found were unique to a single crop. For example, only 35% of the biogenic compounds detected in the wheat atmosphere were unique to wheat, while 36% were unique to potato and 26% were unique to lettuce. The number of compounds detected in the wheat (20 compounds) atmosphere was greater than that of potato (11) and lettuce (15) and concentration levels of biogenic and non-biogenic VOC's were similar. 相似文献
15.
G W Stutte R M Wheeler 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1997,20(10):1913-1922
Bioregenerative life support systems (BLSS) being considered for long duration space missions will operate with limited resupply and utilize biological systems to revitalize the atmosphere, purify water, and produce food. The presence of man-made materials, plant and microbial communities, and human activities will result in the production of volatile organic compounds (VOCs). A database of VOC production from potential BLSS crops is being developed by the Breadboard Project at Kennedy Space Center. Most research to date has focused on the development of air revitalization systems that minimize the concentration of atmospheric contaminants in a closed environment. Similar approaches are being pursued in the design of atmospheric revitalization systems in bioregenerative life support systems. in a BLSS one must consider the effect of VOC concentration on the performance of plants being used for water and atmospheric purification processes. In addition to phytotoxic responses, the impact of removing biogenic compounds from the atmosphere on BLSS function needs to be assessed. This paper provides a synopsis of criteria for setting exposure limits, gives an overview of existing information, and discusses production of biogenic compounds from plants grown in the Biomass Production Chamber at Kennedy Space Center. 相似文献
16.
C P McKay E I Friedmann R A Wharton W L Davies E I Friedman 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1992,12(4):231-238
We divide the history of water on the Martian surface into four epochs based upon the atmospheric temperature and pressure. In Epoch 1, during which a primordial CO2 atmosphere was actively maintained by impact and volcanic recycling, we presume the mean annual temperature to have been above freezing, the pressure to have exceeded one atmosphere, and liquid water to have been widespread. Under such conditions, similar to early Earth, life could have arisen and become abundant. After this initial period of recycling, atmospheric CO2 was irreversibly lost due to carbonate formation and the pressure and temperature declined. In Epoch II, the mean annual temperature fell below freezing but peak temperatures would have exceeded freezing. Ice covered lakes, similar to those in the McMurdo Dry Valleys of Antarctica could have provided a habitat for life. In Epoch III, the mean and peak temperatures were below freezing and there would have been only transient liquid water. Microbial ecosystems living in endolithic rock "greenhouses" could have continued to survive. Finally, in Epoch IV, the pressure dropped to near the triple point pressure of water and liquid water could no longer have existed on the surface and life on the surface would have become extinct. 相似文献
17.
18.
A E Drysdale S Maxwell 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2003,31(7):1791-1797
Waste technologies for Mars missions have been analyzed, considering equivalent system mass and interface loads. Storage or dumping seems most appropriate for early missions with low food closure. Composting or other treatment of inedible biomass in a bioreactor seems most attractive for moderate food closure (50-75%). Some form of physicochemical oxidation of the composted residue might be needed for increased food closure, but oxidation of all waste does not seem appropriate due to excess of production of carbon dioxide over demand. More comprehensive analysis considering interfaces with other mission systems is needed. In particular, in-situ resource utilization is not considered, and might provide resources more cheaply than waste processing. 相似文献
19.
A E Drysdale M K Ewert A J Hanford 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2003,31(1):51-61
Life support approaches for Mars missions are evaluated using an equivalent system mass (ESM) approach, in which all significant costs are converted into mass units. The best approach, as defined by the lowest mission ESM, depends on several mission parameters, notably duration, environment and consequent infrastructure costs, and crew size, as well as the characteristics of the technologies which are available. Generally, for the missions under consideration, physicochemical regeneration is most cost effective. However, bioregeneration is likely to be of use for producing salad crops for any mission, for producing staple crops for medium duration missions, and for most food, air and water regeneration for long missions (durations of a decade). Potential applications of in situ resource utilization need to be considered further. 相似文献
20.
Estimation and assessment of Mars contamination. 总被引:1,自引:0,他引:1
A Debus 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2005,35(9):1648-1653
Since the beginning of the exploration of Mars, more than fourty years ago, thirty-six missions have been launched, including fifty-nine different space systems such as fly-by spacecraft, orbiters, cruise modules, landing or penetrating systems. Taking into account failures at launch, about three missions out of four have been successfully sent toward the Red Planet. The fact today is that Mars orbital environment includes orbiters and perhaps debris, and that its atmosphere and its surface include terrestrial compounds and dormant microorganisms. Coming from the UN Outer Space Treaty [United Nations Treaty on Principles Governing the Activities of States in the Exploration and Use of Outer Space, including the Moon and Other Celestial Bodies (the "Outer Space Treaty") referenced 610 UNTS 205 - resolution 2222(XXI) of December 1966] and according to the COSPAR planetary protection policy recommendations [COSPAR Planetary Protection Policy (20 October 2002), accepted by the Council and Bureau, as moved for adoption by SC F and PPP, prepared by the COSPAR/IAU Workshop on Planetary Protection, 4/02 with updates 10/0, 2002], Mars environment has to be preserved so as not to jeopardize the scientific investigations, and the level of terrestrial material brought on and around Mars theoretically has to comply with this policy. It is useful to evaluate what and how many materials, compounds and microorganisms are on Mars, to list what is in orbit and to identify where all these items are. Considering assumptions about materials, spores and gas location and dispersion on Mars, average contamination levels can be estimated. It is clear now that as long as missions are sent to other extraterrestrial bodies, it is not possible to keep them perfectly clean. Mars is one of the most concerned body, and the large number of missions achieved, on-going and planned now raise the question about its possible contamination, not necessarily from a biological point of view, but with respect to all types of contamination. Answering this question, will help to assess the potential effects of such contamination on scientific results and will address concerns relative to any ethical considerations about the contamination of other planets. 相似文献