共查询到20条相似文献,搜索用时 0 毫秒
1.
C F Chyba 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1995,15(3):45-48
Comets in our solar system appear to have provided a bridge between the cold, volatile-rich outer solar system, and the warm, but volatile-poor inner solar system. Excluding tidal and possible extinct radionuclide heating sources, only in the inner solar system are temperatures high enough for liquid water, and therefore life as we know it, to exist for times comparable to the age of the solar system. Comets may have been crucial for providing biogenic volatiles and perhaps organic molecules to this warm environment. It is therefore interesting from an exobiological point of view to ask if comets exist in other planetary systems. Most attempts to detect comets around other stars or in interstellar space have failed. However, there is growing spectroscopic evidence for comet-like bodies orbiting the star Beta Pictoris. 相似文献
2.
Development of thermal sensors and drilling systems for lunar and planetary regoliths 总被引:1,自引:0,他引:1
N.I. Kömle E. Kaufmann G. Kargl Yang Gao Xu Rui 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2008
We consider some novel concepts for thermal properties experiments aboard lunar landers or rovers, that may lead to an improved understanding of both the structure of the lunar near surface layers and the lunar thermal history. The new instruments could be developed using the experience and heritage from recently developed systems, like the Rosetta Lander thermal conductivity experiment MUPUS and existing designs used for terrestrial measurements of thermal conductivity. We describe shortly the working principle of such sensors and the main challenges faced when using them in the airless regolith layers of the Moon or other airless bodies. In addition new concepts to create appropriate drill holes for thermal and other measurements in the lunar regolith are discussed. 相似文献
3.
O. Wolczek 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1981,1(8):217-221
A more precise definition of planet is proposed based on the existence of dynamic planetary systems on it. Four basic planetary systems: the intraplanetary, the atmospheric, the magnetospheric and the biospheric one are discussed taking into account interactions of internal and external (cosmic) factors. The formation of distinct phases inside dynamic planetary systems is handled and the dissipative character of these phases is emphasized. The great importance of the formation and role of boundary layers between various phases is shown. Finally the exceptional significance of the action of some boundary layers as barriers is treated in some detail. 相似文献
4.
T.M. Eneev N.N. Kozlov 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1981,1(8):201-215
Evolution of a system consisting of a great number of bodies that are gravitationally interacting and aggregating in contacts is considered. Body motions take place in the gravitational field of a central massive body (Sun or planet) in the same plane and at the initial time of system evolution orbits of all bodies are circular. It is shown that during evolution of the protoplanetary cloud, ring zones of matter rarefaction and condensation develop. Development of the condensation zones leads to the formation of planets, the most part of which acquire a direct rotation about their axes. In the case under consideration, approximate agreement between the law of planetary distances and that of geometric progression takes place as it is observed in planetary and satellite systems. The formation of the terrestrial planets and Jovian planets has been simulated. The principal numerical results have been obtained through digital simulation of planetary accumulation. 相似文献
5.
C de Bergh 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1995,15(3):427-440
Recent progress on measurements of isotopic ratios in planetary or satellite atmospheres include measurements of the D/H ratio in the methane of Uranus, Neptune and Titan and in the water of Mars and Venus. Implications of these measurements on our understanding of the formation and evolution of the planets and satellite are discussed. Our current knowledge of the carbon, nitrogen and oxygen isotopic ratios in the atmospheres of these planets, as well as on Jupiter and Saturn, is also reviewed. We finally show what progress can be expected in the very near future due to some new ground-based instrumentation particularly well suited to such studies, and to forthcoming space missions. 相似文献
6.
P M Sterns L I Tennen 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1995,15(3):281-284
The planning and execution of manned and robotic missions to Mars present a wide range of jurisprudential issues. Provisions to prevent the disruption of natural celestial environments, as well as damage to the environment of Earth by the return of extraterrestrial materials, are important components of the law applicable to mankind's activities in outer space, and have been supplemented by scientifically instituted planetary protection policies. However, divergent legal regimes may exist, as the space treaties in force are neither uniform in their provisions, nor identical as to the states which have signed, ratified, or adopted the international agreements. The legal requirements applicable to a specific mission will vary depending on the entities conducting the program and specific mission profile. This article analyzes the divergent international legal regimes together with the factors which will influence the determination of the standards of conduct which will govern manned and robotic missions to Mars. 相似文献
7.
V I Trofimov A Victorov M Ivanov 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1996,18(1-2):333-337
Two tasks must be accomplished to provide planetary protection for Mars return missions: (1) sterilization of the scientific module to be landed on Mars and (2) reliable sterilization of all material returned to Earth, while ensuring the scientific integrity of martian samples. This paper examines similarity and differences between these two tasks, and includes a discussion of technological implementation conditions and the nature of terrestrial and hypothesized martian microflora. The feasibility of a number of chemical and physical (ultraviolet and ionizing radiation and heating) methods of sterilization for use on the ground and onboard are discussed and compared. A combination of different methods will probably be selected as the most appropriate for ensuring planetary protection on the return mission. 相似文献
8.
J D Rummel 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2000,26(12):1893-1899
NASA is committed to exploring space while avoiding the biological contamination of other solar system bodies and protecting the Earth against potential harm from materials returned from space. NASA's planetary protection program evaluates missions (with external advice from the US National Research Council and others) and imposes particular constraints on individual missions to achieve these objectives. In 1997 the National Research Council's Space Studies Board published the report, Mars Sample Return: Issues and Recommendations, which reported advice to NASA on Mars sample return missions, complementing their 1992 report, The Biological Contamination of Mars Issues and Recommendations. Meanwhile, NASA has requested a new Space Studies Board study to address sample returns from bodies other than Mars. This study recognizes the variety of worlds that have been opened up to NASA and its partners by small, relatively inexpensive, missions of the Discovery class, as well as the reshaping of our ideas about life in the solar system that have been occasioned by the Galileo spacecraft's discovery that an ocean under the ice on Jupiter's moon Europa might, indeed, exist. This paper will report on NASA's planned implementation of planetary protection provisions based on these recent National Research Council recommendations, and will suggest measures for incorporation in the planetary protection policy of COSPAR. 相似文献
9.
J Koike T Hori Y Katahira K A Koike K Tanaka K Kobayashi Y Kawasaki 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1996,18(1-2):339-344
If there is a possibility that the organisms carried from Earth to space can live for a significant period on planets, the contamination of planets should be prevented for the purpose of future life-detection experiments. In connection with quarantine for interplanetary missions, we have examined the survivabilities of terrestrial microorganisms under simulated space conditions. In this study, examined the survivabilities of terrestrial organisms under simulated Mars conditions. The Mars conditions were simulated by ultraviolet (UV) and proton irradiation under low temperature, high vacuum, and simulated gaseous conditions. After exposure to the simulated Mars condition, the survivabilities of the organisms were examined. The spores of Bacillus subtilis and Aspergillus niger, some anaerobic bacterias and algaes, showed considerably high survivabilities even after UV and proton irradiation corresponding to 200 years on Mars. This subject is not restricted to academic curiosity but concerns problems involving the contamination of Mars with terrestrial organisms carried by space-probes. 相似文献
10.
K Kobayashi T Kaneko M Tsuchiya T Saito T Yamamoto J Koike T Oshima 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1995,15(3):127-130
Simulated planetary atmospheres (mixtures of simple gases) were irradiated with high energy particles to simulate an action of cosmic rays. When a mixture of carbon monoxide, nitrogen and water was irradiated with 2.8-40 MeV protons, a wide variety of bioorganic compounds including amino acids, imidazole, and uracil were identified in the products. The amount of amino acids was proportional to the energy deposit to the system. Various kinds of simulated planetary atmospheres, such as "Titan type" and "Jovian type", were also irradiated with high energy protons, and gave amino acids in the hydrolyzed products. Since cosmic rays are a universal energy source in space, it was suggested that formation of bioorganic compounds in planetary atmospheres is inevitable in the course of cosmic evolution. 相似文献
11.
A H Delsemme 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1992,12(4):5-12
An early high-temperature phase of the protosolar accretion disk is implied by at least three different telltales in chondrites and confirmed by peculiarities in the dust grains of comet Halley. The existence this high-temperature phase implies a large accretion rate hence a massive early disk. This clarifies the origin of the Kuiper Belt and of the Oort cloud, those two cometary populations of different symmetry that subsist today. Later, when the dust sedimented and was removed from the thermal equilibrium with the gas phase, a somewhat lower temperature of the disk explains the future planets' densities as well as the location beyond 2.6 AU of the carbonaceous chondrite chemistry. This lower temperature remains however large enough to require an exogenous origin for all carbon and all water now present in the Earth. The later orbital diffusion of planetesimals, which is required by protoplanelary growth, is needed to explain the origin of the terrestrial biosphere (atmosphere, oceans, carbonates and organic compounds) by a veneer mostly made of comets. 相似文献
12.
A consensus approach to planetary protection requirements: recommendations for Mars lander missions.
J D Rummel M A Meyer 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1996,18(1-2):317-321
Over the last several years, the nature of the surface conditions on the planet Mars, our knowledge of the growth capabilities of Earth organisms under extreme conditions, and future opportunities for Mars exploration have been under extensive review in the United States and elsewhere. As part of these examinations, in 1992 the US Space Studies Board made a series of recommendations to NASA on the requirements that should be implemented on future missions that will explore Mars. In particular, significant changes were recommended in the requirements for Mars landers, changes that significantly alleviated the burden of planetary protection implementation for these missions. In this paper we propose a resolution implementing this new set of recommendations, for adoption by COSPAR at its 30th meeting in Hamburg. We also discuss future directions and study areas for planetary protection, in light of changing plans for Mars exploration. 相似文献
13.
Z Masinovsky G I Lozovaya A A Sivash 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1992,12(4):199-205
The early evolution of a photocatalytic system of the porphyrin type, able to efficiently collect and utilize solar energy for primary electron transfer is discussed. Experimental results concerning some spectral and photochemical properties of the porphyrins, biosynthetic precursors of chlorophyll and their complexes with polymeric templates are reviewed. Protoporphyrin IX associated with pigmented proteinoid is demonstrated to be a favourable candidate for a role of a photosensitizer of the first photosynthetic reaction centers. The origin and early evolution of the photosynthetic electron transfer chain and of the phosphorylating mechanism are discussed with emphasis on the energetic mechanisms of archaebacteria. 相似文献
14.
L A Spomer 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1994,14(11):411-416
The major functions of soil relative to plant growth include retention and supply of water and minerals, provision of anchorage and support for the root, and provision of an otherwise adequate physical and chemical environment to ensure an extensive, functioning root system. The physical and chemical nature of the solid matrix constituting a soil interacts with the soil confinement configuration, the growing environment, and plant requirements to determine the soil's suitability for plant growth. A wide range of natural and manufactured terrestrial materials have proven adequate soils provided they are not chemically harmful to plants (or animals eating the plants), are suitably prepared for the specific use, and are used in a compatible confinement system. It is presumed this same rationale can be applied to planetary soils for growing plants within any controlled environment life support system (CELSS). The basic concepts of soil and soil-plant interactions are reviewed relative to using soils constituted from local planetary materials for growing plants. 相似文献
15.
F Raulin P Bruston 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1996,18(12):41-49
UV induced syntheses of organic compounds from the main atmospheric constituents can be a very important source of organics in a given planetary environment provided the atmosphere is in a reduced state. The evolution of a CO2 rich medium only produces very low yields of formaldehyde and related oxygenated compounds. Considering a CO rich atmosphere, the photochemical yield of O-organics formation is much higher, when the synthesis of N-organics remains difficult. The most favourable atmosphere as far as photochemical organic synthesis is concerned is a CH4 rich milieu.. The photochemical evolution of such a CH4 atmosphere under UV irradiation leads to a chain of various organics, the complexity of which increases together with the number of pathways involved in their formation. Their complexity also closely correlates with their UV photoabsorption spectrum: the more complex they are, the more shifted is their UV spectrum toward the visible range. Direct photodissociation of methane requires UV photon of wavelengths shorter than about 145 nm. It mainly produces ethane which absorbs UV at wavelengths shorter than about 160 nm, and acetylene, that presents an absorption spectrum extending up to 200 nm. This shift still continuously increases with further increase in number of C atoms. Unsaturated hydrocarbons with 4 and more C atoms have UV absorption characteristics including noticeable band structures in the 250–300 nm range. This trend has very important implication in the photochemical behaviour of a CH4-rich planetary atmosphere, as it induces many catalytic processes. The occurrence of such processes is closely related to vertical atmospheric and energy deposition profiles. Titan provides a very good example of such a UV-directed organic atmospheric chemistry. 相似文献
16.
H H Gieling ThHvan den Vlekkert 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1996,18(4-5):135-138
In horticulture, growing in artificial substrates such as rockwool is more and more considered to be a sound alternative to growing in soil. This development enables the opportunity to create closed-loop systems which lower the waste of raw materials and reduce pollution of the environment. Applying closed-loop systems needs precise knowledge of the composition of the recirculating nutrient solution. This paper presents basic principles of a measuring system, which can monitor continuously the concentration of nutrients in water. The system is based on ion-selective field effect transistors (ISFETs). By appropriate calibration, a high accuracy is achieved for pH and potassium measurements in the nutrient solution. An accuracy of better than 10% (mMol/l) has been achieved. 相似文献
17.
A Bossard D Mourey F Raulin 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1983,3(9):39-43
What is the influence of hydrogen escape from the atmosphere of small planetary bodies on the synthesis of organic molecules in that atmosphere? To answer this question, laboratory experiments have been performed to study the evolution of different reducing model atmospheres submitted to electrical discharges, with and without the simulation of H2 escape. A study of mixtures of nitrogen and methane shows a very strong effect of H2 escape on the formation of organic nitriles, the only nitrogen containing organics detected in the gas phase. These are HCN, CH CCN, (CN)2, CH2CHCN, CH3 CN and CH3CH2CN. The yield of synthesis of most of these compounds is noticeably increased, up to several orders of magnitude, when hydrogen escape is simulated. The escape of H2 from the atmosphere of the primitive Earth may have played a crucial role in the formation of reactive organic molecules such as CHCCN or (CN)2, which can be considered as important prebiotic precursors. These experimental results may also explain extant data concerning the nature and relative abundance of organics present in the atmosphere of Titan, a planetary satellite which may be an ideal model within our solar system for the study of organic cosmochemistry and exobiology. 相似文献
18.
Enrico Mai Jürgen Müller Jürgen Oberst 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2019,63(1):728-749
Classical planetary ephemeris construction comprises three major steps which are to be performed iteratively: numerical integration of coupled equations of motion of a multi-body system (propagator step), reduction of observations (reduction step), and optimization of model parameters (adjustment step). In future, this approach may become challenged by further refinements in force modeling (e.g. inclusion of much more significant minor bodies than in the past), an ever-growing number of planetary observations (e.g. the vast amount of spacecraft tracking data), and big data issues in general. In order to circumvent the need for both the inversion of normal equation matrices and the determination of partial derivatives, and to prepare the ephemeris for applications apart from stand-alone solar-system planetary orbit calculations, here we propose an alternative ephemeris construction method. The main idea is to solve it as an optimization problem by straightforward direct evaluation of the whole set of mathematical formulas, rather than to solve it as an inverse problem with all its tacit mathematical assumptions and potential numerical difficulties. The usual gradient search is replaced by a stochastic search, namely an evolution strategy, the latter of which is perfect for the exploitation of parallel computing capabilities. Furthermore, this new approach allows for multi-criteria optimization and time-varying optima. These issues will become important in future once ephemeris construction is just one part of even larger optimization problems, e.g. the combined and consistent determination of a generalized physical state (orbit, size, shape, rotation, gravity, ) of celestial bodies (planets, satellites, asteroids, or comets), and/or if one seeks near real-time solutions. Here, we outline the general idea and exemplarily optimize high-correlated asteroidal ring model parameters (total mass and heliocentric radius), and individual asteroid masses, based on simulated observations. 相似文献
19.
20.
M Dobrijevic J P Parisot 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1995,15(10):1-4
A numerical model of CH4 and CH4-NH3 photochemistry at 147 nm has been developed and results are directly compared with experimental simulations carried out for the same mixtures. Simulations with varying quantities of ammonia and hydrogen show how amines and nitriles can be produce in planetary atmospheres. These comparisons allow one to test schemes of reactions used in photochemical models. In particular, it is shown that the scheme of reactions of CH4 is fairly well consistent with experimental data. On the other hand, the photochemistry of NH3 should be improved. 相似文献