首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mismatched Filtering of Sonar Signals   总被引:1,自引:0,他引:1  
A replica correlator (matched filter) is an optimum processor for a receiver employing a pulse of continuous wave (CW) signal in a white Gaussian noise background. In an active sonar, however, when the target of interest has low Doppler shift and is embedded in a high reverberation background, this is not so. High sidelobes of the correlator frequency response pass a significant portion of the signal contained in the mainlobe of the reverberation spectrum. In order to reduce the sidelobes of the correlator output spectrum and at the same time keep the increase in its 3 dB bandwidth to a small amount, we propose lengthening of the replica of the transmitted signal and weighting it by a Kaiser window. It is demonstrated that by extending the weighted replica by 50 percent compared with the transmitted signal, it is possible to reduce the sidelobe levels to at least 40 dB below the mainlobe peak, with the concomitant increase of the 3 dB band-width by less than 5 percent. The degradation in signal-to-noise ratio (SNR) performance for such a ?mismatched? filter receiver with respect to the matched filter is less than 1.5 dB.  相似文献   

2.
Uniform coherent pulse trains offer a practical solution to the problem of designing a radar signal possessing both high range and range-rate resolution. The Doppler sensitivity provides some rejection of off-Doppler (clutter) returns in the matched filter receiver. This paper considers the use of a processor in which members of the received pulse train are selectively weighted in amplitude and phase to improve clutter suppression. The techniques described are particularly suitable for rejecting interference entering the processor through ambiguous responses (range sidelobes) of the signal. The complex weights which are derived are optimum in the sense that they produce the maximum clutter suppression for a given detection efficiency. In determining these weights, it is assumed that the distribution of clutter in range and range rate relative to targets of interest is known. Thus, clutter suppression is achieved by reducing the sidelobe levels in specified regions of the receiver response. These techniques are directly applicable to array antennas; the analogous antenna problem would be to reduce sidelobe levels in a particular sector while preserving gain. Complex weighting is most successful when the clutter is limited in both range and velocity.  相似文献   

3.
自适应阵列(或称自适应波束形成)目前已广泛应用到雷达、声纳和通信领域中用来抑制各种干扰(有意的干扰,杂波干扰和多用户干扰等)。在雷达应用中,为了减轻脉冲欺骗式干扰或旁瓣目标并利用单脉冲雷达来准确测量目标波达方向.要求自适应方向图具有低副瓣和稳定的主瓣形状。在实际应用中,各种失配误差将降低自适应阵列的性能.这些误差包括由于目标的波达方向不精确引起的信号指向误差,由通道失配和位置扰动引起的阵列校准误差和由小样本教引起的协方差矩阵估计误差。在此情况下,自适应波束形成的性能大大下降(干扰抑制性能变差。主瓣失真和高的副瓣)。已提出了一种基于二次约束的集成峰值副瓣控制(integrated peak sidelobe control,简称IPSC)方法。该方法可以精确地控制峰值副瓣电平并产生具有稳定的主瓣形状的自适应方向图。研究IPSC中目标信号的影响和信号消除方案以进一步提高IPSC的性能。并将IPSC方法和最新提出的基于二阶锥规划(second-order cone programming,简称SOCP)的分布式峰值副瓣控制(distfibuted peak sidelobe control,简称为DPSC)新方法在性能上进行了比较。仿真结果表明。在干扰抑制性能和方向图控制质量方面IPSC比DPSC性能优越。此外IPSC比DPSC计算高效。  相似文献   

4.
The effects of target Doppler are addressed in relation to adaptive receive processing for radar pulse compression. To correct for Doppler-induced filter mismatch over a single pulse, the Doppler-compensated adaptive pulse compression (DC-APC) algorithm is presented whereby the respective Doppler shifts for large target returns are jointly estimated with the illuminated range profile and subsequently incorporated into the original APC adaptive receive filter formulation. As a result, the Doppler-mismatch-induced range sidelobes can be suppressed thereby regaining a significant portion of the sensitivity improvement that is possible when applying adaptive pulse compression (APC) without the existence of significant Doppler mismatch. In contrast, instead of compensating for Doppler mismatch, the single pulse imaging (SPI) algorithm generalizes the APC formulation for a bank of Doppler-shifted matched filters thereby producing a sidelobe-suppressed range-Doppler image from the return signal of a single radar pulse which is applicable for targets with substantial variation in Doppler. Both techniques are based on the recently proposed APC algorithm and its generalization, the multistatic adaptive pulse compression (MAPC) algorithm, which have been shown to be effective for the suppression of pulse compression range sidelobes thus dramatically increasing the sensitivity of pulse compression radar.  相似文献   

5.
A major technology barrier to the application of pulse compression for the meteorological functions required by a next generation ATC radar is range/time sidelobes which mask and corrupt observations of weak phenomena occurring near areas of strong extended meteorological scatterers. Techniques for suppressing range sidelobes are well known but without prior knowledge of the scattering medium's velocity distribution their performance degrades rapidly in the presence of Doppler. Recent investigations have presented a “doppler tolerant” range sidelobe suppression technique. The thrust of the work described herein is the extension of previous simulations to actual transmitted dispersed/coded waveforms using the S-band surveillance radar located at Rome Laboratory Surveillance Facility. The objectives of the experiment are: 1) to extend the verification of the simulation of the Doppler tolerant technique; and 2) to demonstrate that the radar transmitter, waveform generator, and receiver imperfections do not significantly degrade resolution, performance or reliability of meteorological spectral moment estimates  相似文献   

6.
针对高脉冲重复频率脉冲多普勒(HPRF-PD)体制的相控阵主动雷达导引头中存在的距离遮挡问题,设计了一种新的波形选择策略。首先,利用提出的脉冲重复频率(PRF)波形选择策略,离线计算得到距离对应PRF的波形查找表。然后,通过叉积自动频率控制环路滤波(CPAFCLF)算法预估下个相参处理间隔(CPI)导引头与目标间的径向相对速度,并联合提出的基于Sage-Husa带有速度预测的自适应"当前"统计模型(SH-ACSMVP)算法得到的距离跟踪值,获得下个CPI的距离预测值。在跟踪机动目标场景中,相比于"当前"统计(CS)模型跟踪算法及基于"当前"统计模型的自适应无迹卡尔曼滤波(CAUKF)算法,本文算法得到的距离预测误差更小,误差收敛速度更快。根据此距离预测值从波形查找表中选择波形发射,作为下个CPI的发射波形,实现后续跟踪阶段的抗距离遮挡,提高目标跟踪性能。仿真结果表明了本文所设计波形选择策略的正确性及有效性。  相似文献   

7.
Acoustic nodes, each containing an array of microphones, can track targets in x-y space from their received acoustic signals, if the node positions and orientations are known exactly. However, it is not always possible to deploy the nodes precisely, so a calibration phase is needed to estimate the position and the orientation of each node before doing any tracking or localization. An acoustic node can be calibrated from sources of opportunity such as beacons or a moving source. We derive and compare several calibration methods for the case where the node can hear a moving source whose position can be reported back to the node. Since calibration from a moving source is, in effect, the dual of a tracking problem; methods derived for acoustic target trackers are used to obtain robust and high resolution acoustic calibration processes. For example, two direction-of-arrival-based calibration methods can be formulated based on combining angle estimates, geometry, and the motion dynamics of the moving source. In addition, a maximum likelihood (ML) solution is presented using a narrowband acoustic observation model, along with a Newton-based search algorithm that speeds up the calculation the likelihood surface. The Cramer-Rao lower bound (CRLB) on the node position estimates is also derived to show that the effect of position errors for the moving source on the estimated node position is much less severe than the variance in angle estimates from the microphone array. The performance of the calibration algorithms is demonstrated on synthetic and field data.  相似文献   

8.
The resolution properties and clutter performance of a simultaneous Doppler and acceleration measurement are investigated in detail with particular emphasis given to coherent pulse trains. The analysis is based on the concept of a matched-filter receiver, although receiver weighting of the type that reduces Doppler sidelobes is also analyzed in detail. Near the main lobe of the acceleration response is a pedestal-ike sidelobe region, the height of which is about 1/N of the main response lobe power where N is the number of pulses in the train. The extent of this pedestal along the acceleration axis is proportional to N. The acceleration measurement in a clutter environment is best performed when both targets and clutter are confined to this pedestal region, since some response sidelobes outside of this region are extremely large.  相似文献   

9.
In many detection and estimation problems, Doppler frequency shifts are bounded. For clutter or multipath that is uniformly distributed in range and symmetrically distributed in Doppler shift relative to the signal, detectability of a point target or a communication signal is improved by minimizing the weighted volume of the magnitude-squared autoambiguity function. When clutter Doppler shifts are bounded, this volume is in a strip containing the range axis on the range-Doppler plane. For scattering function estimation, e.g., for weather radar, Doppler flow meters, and distributed target classifiers, it is again relevant to minimize ambiguity volume in a strip. Strip volume is minimized by using a pulse train, but such a signal has unacceptably large range sidelobes for most applications. Other waveforms that have relatively small sidelobe level within a strip on the range-Doppler plane, as well as small ambiguity volume in the strip, are obtained. The waveforms are composed of pulse pairs that are phase modulated with Golay complementary codes.  相似文献   

10.
Performance results for the sidelobe level of a compressed pulse that has been preprocessed through an adaptive canceler are obtained. The adaptive canceler is implemented using the sampled matrix inversion algorithm. Because of finite sampling, the quiescent compressed pulse sidelobe levels are degraded due to the preprocessing of the main channel input data stream (the uncompressed pulse) through an adaptive canceler. It is shown that if N is the number of input canceler channels (main and auxiliaries) and K is the number of independent samples per channel, then K/N can be significantly greater than one in order to retain sidelobes that are close to the original quiescent sidelobe level (with no adaptive canceler). Also it is shown that the maximum level of degradation is independent of whether pulse compression occurs before or after the adaptive canceler if the uncompressed pulse is completely contained within the K samples that are used to calculate the canceler weights. This same analysis can be used to predict the canceler noise power level that is induced by having the desired signal present in the canceler weight calculation  相似文献   

11.
The utility of Barker-type phase-reversal codes is extended by the use of sidelobe suppression techniques that can be easily implemented in digital form. It is shown that sidelobe suppression techniques can be found where the tapped delay line used to reduce the sidelobes has only a few distinct tap weights, in which case the complexity of the digital processor is greatly reduced. An example is given where the technique is applied to Barker codes with positive sidelobes, specifically, the 13-element Barker code. If higher pulse compression factors are desired than are obtainable with Barker codes, multistage Barker codes may be used. The sidelobes then may be suppressed for any one or all of the different coding stages.  相似文献   

12.
Signal or target detection is sometimes complicated by the presence of strong interference. When this interference occurs mainly in the sidelobes of the antenna pattern, a solution to this problem is realized through a sidelobe canceler (SLC) implementation. Since the false-alarm probability is a system parameter of special importance in radar, an interference-canceling technique for radar application should maintain the false-alarm probability constant over a wide range of incident interference power. With the requirements of sidelobe interference cancellation and constant false alarm rate (CFAR), a new algorithm for radar detection in the presence of sidelobe interference is developed from the generalized likelihood ratio test of Neyman-Pearson. In this development, the received interference is modeled as a nonstationary but slowly varying Gaussian random process. Cancellation of the sidelobe interference is based upon a `synchronous' estimate of the spatial covariance of the interference for the range gate being tested. This algorithm provides a fixed false-alarm rate and a fixed threshold which depend only upon the parameters of the algorithm  相似文献   

13.
Dolph-Chebyshev amplitude weighting is used with FFT signal processors and array antennas when a low sidelobe response is required. This particular weighting minimizes the width of the mainlobe response while forcing all of the sidelobes to a specified sidelobe level. As the specified sidelobe level is reduced, the mainlobe width increases, as does the loss in signal-to-noise ratio. This correspondence describes how the Dolph-Chebyshev weights may be easily calculated, and gives design data showing how signal-to-noise loss and mainlobe width vary with the specified sidelobe level.  相似文献   

14.
An active array processor is concerned with the problem of detecting a signal echo, reflected from a target, in the presence of reverberation (clutter). The processor can also be used to estimate target range and bearing. It is a priori not evident whether the optimum (likelihood ratio) detector can be factored into spatial and temporal operations, thus resulting in a simpler processor implementation. This paper studies this problem for a linear continuous array in a reverberation-limited environment. Conditions on signal, reverberation, and array parameters are derived under which the optimum detector is factorable. The validity of using factorability as a criterion of signal design is briefly examined. Finally, the relationship between space-time factorability and range-bearing estimates is pointed out.  相似文献   

15.
This paper considers the problem of finding the directions of narrowband signals using a time-varying array whose elements move during the observation interval in an arbitrary but known way. We derive two eigenstructure-based algorithms for this problem, which are modifications of techniques developed originally for time-invariant arrays. The first uses array interpolation, and the second uses focusing matrices. Like other eigenstructure-based methods, these algorithms require a modest amount of computations in comparison with the maximum likelihood (ML) estimator. The performance of the algorithms is evaluated by Monte-Carlo simulations, and is compared with the Cramer Rao Bound (CRB). Although both techniques were successful for wideband array processing with time-invariant arrays, we found that only the interpolated array algorithm is useful for direction finding (DF) with time-varying arrays  相似文献   

16.
A novel range-Doppler imaging algorithm with OFDM radar   总被引:1,自引:1,他引:0  
《中国航空学报》2016,(2):492-501
Traditional pulse Doppler radar estimates the Doppler frequency by taking advantage of Doppler modulation over different pulses and usually it requires a few pulses to estimate the Doppler frequency. In this paper, a novel range-Doppler imaging algorithm based on single pulse with orthogonal frequency division multiplexing(OFDM) radar is proposed, where the OFDM pulse is composed of phase coded symbols. The Doppler frequency is estimated using one single pulse by utilizing Doppler modulation over different symbols, which remarkably increases the data update rate. Besides, it is shown that the range and Doppler estimations are completely independent and the well-known range-Doppler coupling effect does not exist. The effects of target movement on the performances of the proposed algorithm are also discussed and the results show that the algorithm is not sensitive to velocity. Performances of the proposed algorithm as well as comparisons with other range-Doppler algorithms are demonstrated via simulation experiments.  相似文献   

17.
In an agile beam phased array radar, the beam is often multiplexed over several angular positions, and “listens” in each position only over an instrumented range that may be a fraction of the unambiguous range as determined by the pulse repetition period in each position. After transmitting a pulse in a given direction, the beam is switched, essentially instantaneously, to another position, after the instrumented range delay. In this second position, echoes from the first position, from multiple trips of the instrumented range, enter the one-way angular sidelobes of the first position. This interference is compounded if there are several beam positions in a pulse repetition period. The author proposes a method of phase coding the pulses in such a way that the pulse-to-pulse phase variation in each direction is orthogonal to every other phase code in the other directions. The codes are Walsh functions. These are sets of binary valued (+1 or -1) functions such that all of the functions in the set are mutually orthogonal. Not every possible number N of pulses in each direction and number K of beam positions can be accommodated, but a large variety of such combinations can be accommodated. Several examples are given. The combination of low one-way sidelobes and orthogonality (or near orthogonality) of the phase codes should provide for very stringent sidelobe self interference rejection  相似文献   

18.
CW radar signals and processors are discussed. The use of the periodic ambiguity function (PAF) to analyze the delay-Doppler performance of CW signals and their corresponding correlation receivers, is extended to include weight function effects. This work provides tools which can predict the delay-Doppler response of almost any phase-coded CW radar. Examples demonstrate that a combination of CW signals having perfect periodic autocorrelation, a matched reference signal with a large number of modulation periods and a smooth weight function, can create a delay-Doppler response with extremely low sidelobes, strongly resembling the response of a coherent pulse train  相似文献   

19.
A first-order analysis is performed of the sensitivity of the maximum likelihood (ML) direction-finding algorithm to system errors which cause differences between the array manifold used by the algorithm and the true array manifold. The effect of such errors on the directions-of-arrival (DOA) estimates is investigated. The ability of the ML algorithm to resolve two closely spaced sources in the presence of phase and gain errors in the array elements or in the receivers, or errors in the element locations, is analyzed. A formula for computing the failure threshold of the algorithm as a function of source separation and other system parameters is derived and tested by simulation. The analysis assumes that the exact covariance matrix of array element outputs is known  相似文献   

20.
A linear array of hydrophones is considered for detecting a signal echo from a stationary target in the presence of reverberation. The structure of the optimum (likelihood ratio) detector is compared with that of a beamformer-matched filter detector. The conditions causing an increase in the spatial noise correlation between two hydrophones are the conditions under which the optimum spatial detector performs significantly better than the beamforming detector. A study of the space-time correlation function of reverberation shows that 1) a decrease in scatterer angular spread (or a narrowing of the receiver directivity pattern) tends to increase the spatial correlation, 2) if the scatterer Doppler spread is much less than the signal carrier frequency and if the angular spread is uniform, it is still possible to get a high correlation if the intersensor distance is much smaller than the carrier wavelength. These conditions indicate situations where optimum techniques may be worthwhile.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号