首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The possibility of water ice in the Martian subsurface regolith continues to present an intriguing enigma. We submit that any exo-martian source of energy, i.e. meteorite, asteroid or cometary impact, must disturb the equilibrium within the regolith surrounding an impact site. We farther propose impactors with the size range of 100 m and larger with velocities of 10 km s−1 are effective in causing significant temperature increases in the regolith and subsequent ice melting. We present our studies of the crater formation within Martian surface layers that presumably are a solid mixture of regolith and water ice. Mass ratio of rocks to ice, as well as the thermal gradient in the crust, are the parameters. We have completed numerical simulations of a cratering event by means of two-dimensional, axialsymmetric hydrocodes involving a free particles' method in order to provide a simulation of an impact cratering. A fraction of subsurface ice melts and the crater partially forms from mud-like material. Comparison of a calculated crater and observed Martian crater is presented. The simplified analytical estimates concerning melting of ground ice in the regolith surrounding a Martian impact crater are presented.  相似文献   

2.
The atmospheric influence caused by the Martian permanent south CO2 ice cap is examined to improve the Global Mars Multiscale Model (GM3) to see if it can significantly improve the representation of south polar meteorology. However, the seasonal carbon dioxide ice in the polar regions is presented in the surface ice simulation by the Global Mars Multiscale Model but the model does not produce a permanent south CO2 ice cap, and the physics code must modify to capture the realistic physical such as ice process detail; probably makes a bias in terms of total CO2 ice and meteorological processes in the model aside from ice formation. The permanent south CO2 ice cap in the model can significantly improve the representation of south polar meteorology for example in predicted surface temperatures, surface pressures, horizontal and zonal winds over the south cap and possible initiation of dust storms at south polar region during the southern summer period.  相似文献   

3.
The heat transfer in a regolith subsurface layer of thickness 20 m has been theoretically simulated for the areas near Mercury's north pole aiming at the clarification of the possible existence of subsurface ice formations of different form. The paper considers different models of the icy regolith structure and composition: pure uniform amorphous ice; a porous dispersive system with ice-filled pores and voids; permafrost. For comparison the heat transfer in dry iceless regolith has been considered as well. It has been shown that the line of maximum distribution of subsurface icy formations depends on the icy regolith model, but for any one in the “hot” regions it does not go below 70°. For the “cool” regions this line has been shown to go from 5° to 10° southward than that for the “hot” ones. The possible thickness of icy regolith near the pole has been estimated for different models assuming an interior heat flow of 15 mW m−2. It has been shown that the maximum thickness of this layer takes place at the pole and is equal to 10 km for any model.  相似文献   

4.
The South Pole of Mars is characterized by an asymmetric residual ice cap composed of water ice and CO2 ice. On the opposite side of the residual cap, there exists an area called cryptic region which is relatively free of ice during summer time. Many fan-shaped km-scale structures apparently caused by a wind-blown system of dust-laden gas jets occurred dozens degrees of Ls before the complete sublimation of the CO2 frost layer. We have examined the seasonal cycles of condensation and sublimation in the cryptic and non-cryptic regions by using the topographic data from the MOLA/MGS measurements. Using the MOLA topography data collected over one Martian year (1999–2001), we have studied the temporal elevation change and the seasonal cycle of the carbon dioxide frost on the southern polar caps. We have produced mapping of the seasonal CO2 frost thickness variation for seven Ls (30°, 60°, 90°, 120°, 150°, 180°, 210°, 240°, 270° and 330°). It is found that the time variations of the CO2 frost thickness in these two regions are quite similar. The greatest thickness of the CO2 frost layer is about 0.76–0.78 m in both places occurs at Ls = 150°.  相似文献   

5.
Recent discoveries of water ice trapped within lunar topsoil (regolith) have placed a new emphasis on the recovery and utilization of water for future space exploration. Upon heating the lunar ice to sublimation, the resulting water vapor could theoretically transmit through the lunar regolith, to be captured on the surface. As the permeability of lunar regolith is essential to this process, this paper seeks to experimentally determine the permeability and flow characteristics of various gas species through simulated lunar regolith (SLR). Two different types of SLR were compacted and placed into the permeability setup to measure the flow-rate of transmitted gas through the sample. Darcy’s permeability constant was calculated for each sample and gas combination, and flow characteristics were determined from the results. The results show that Darcy’s permeability constant varies with SLR compaction density, and identified no major difference in permeable flow between the several tested gas species. Between the two tested SLR types, JSC-1A was shown to be more permeable than NU-LHT under similar conditions. In addition, a transition zone was identified in the flow when the gas pressure differential across the sample was less than ∼40 kPa.  相似文献   

6.
Noctilucent clouds (NLC) and polar mesospheric summer echoes (PMSE) are phenomena that occur in the summertime polar regions due to the presence of ice particles around the mesopause. That ice particles are able to form in a region with such low water vapour concentration as the mesopause is noteworthy. Even though the summer mesopause is the coldest region on Earth, temperatures are generally not low enough for homogeneous nucleation to occur, which necessitates the presence of pre-existing condensation nuclei. The nature of these nuclei has long puzzled the scientific community and many candidates have been suggested, such as particles of meteoric origin, ion clusters, sodium bi-carbonate, sulfate aerosols and soot particles. Out of these the so-called “smoke particles”, i.e. particles re-condensed from ablated meteoritic material, have long been considered the most likely. Generally, it has been believed that these particles exist in numbers of the order of thousands per cubic centimetre at the mesopause. This belief is based on 1-dimensional studies of meteoric material. A recent 2-dimensional model study, which includes the atmospheric circulation from summer to winter pole however, suggests much lower number densities at the summer mesopause. We here investigate the implications of low number densities for the formation of ice particles. We find that even though resulting ice particle distribution may produce typical NLC brightness, the number density of ice particles is not consistent with what is expected for NLC and PMSE. In particular, it is much lower than the ice particle concentration (>1000 cm−3) typically expected to explain the “electron bite-outs” that are frequently observed in the vicinity of PMSE’s. We therefore re-examine the assumptions and parameters that determine the smoke distribution. We show that even though the number of condensation nuclei at the polar summer mesopause can be increased within the uncertainties, the results in most scenarios remain insufficient. We show that charged particles, perhaps in combination with significant deviations from the mean mesospheric state, may be necessary for condensation of ice particles in the polar summer mesosphere. Hence, we raise the question whether the conventional ideas of nucleation on meteoric smoke, which are used in current mesospheric ice models, are correct.  相似文献   

7.
The realistic model of Quegan et al. has been used to investigate the convection paths of ionospheric plasma at 300 km altitude, for different polar cap radii and in both hemispheres. Taking the Northern magnetic dip pole to be at a co-latitude of 11° and the Southern magnetic dip pole at a co-latitude of 23°, these paths are presented in a Sun-Earth frame, with the position of the Earth's axis fixed as it is on 21 March, as polar plots centred on the magnetic pole. There are marked hemispheric differences between 13 and 23 L.T., particularly near the stagnation region at 18 to 21 L.T., but only minor differences between 00 and 12 L.T., when the radius of the polar cap exceeds 12°. For a smaller polar cap, the differences between the hemispheres are small at all local times. The time taken to perform a complete circuit is most dependent on the polar cap radius, and most variable - between 15 and 36 h - for convection paths starting near 60° latitude. The time that plasma convecting from noon to near midnight across the Northern polar cap spends within the 10° co-latitude circle increases from 6 h, for a polar cap radius of 10°, to 11.5 h at 17°. These results are compared and contrasted with other model calculation results and with some ground-based and satellite observations of plasma densities at high latitudes.  相似文献   

8.
The PC index based on a statistically justified relationship between the polar cap magnetic activity and the interplanetary electric field EKL has been derived as a value standardized for the EKL intensity regardless of season, UT and hemisphere. As a result, the summer and winter PC indices are consistent with one another under ordinary conditions. Discrepancies between the summer and winter PC indices arising in the course of magnetospheric substorms are analyzed in this paper. It is argued that the channel of enhanced conductivity, formed in the auroral oval owing to intense auroral particle precipitation, strongly improves the conditions for closure of the Region 1 field-aligned currents in the winter dark polar region but only trivially affects the conditions of the Region 1 FAC closure in the summer sunlit ionosphere. Since the coefficients describing the relationship between EKL and the polar cap magnetic activity were derived for statistically justified (i.e., mean) conditions, their application to such abnormal situation, as intense field-aligned currents in the winter dark polar region, leads to overestimation of the winter PC index. The summer and winter PC indices level off as soon as the intense auroral particle precipitation terminates and the auroral ionosphere in the winter and summer polar caps returns to the ordinary (statistically justified) state.  相似文献   

9.
The two primary requirements for a Martian habitat structure include effective radiation shielding against the Galactic Cosmic Ray (GCR) environment and sufficient structural and thermal integrity. To significantly reduce the cost associated with transportation of such materials and structures from earth, it is imperative that such building materials should be synthesized primarily from Martian in situ resources. This paper illustrates the feasibility of such an approach. Experimental results are discussed to demonstrate the synthesis of polyethylene (PE) from a simulated Martian atmosphere and the fabrication of a composite material using simulated Martian regolith with PE as the binding material. The radiation shielding effectiveness of the proposed composites is analyzed using results from radiation transport codes and exposure of the samples to high-energy beams that serve as a terrestrial proxy for the GCR environment. Mechanical and ballistic impact resistance properties of the proposed composite as a function of composition, processing parameters, and thermal variations are also discussed to evaluate the multifunctionality of such in situ synthesized composite materials.  相似文献   

10.
As a result of measurements acquired by the Cassini–Huygens mission of Titan’s near surface atmospheric composition and temperature, Titan conditions can now be simulated in the laboratory and samples can subsequently be subjected to those conditions. Titan demonstrates an active hydrological-like cycle with its thick atmosphere, dynamic clouds, polar lakes of methane and ethane, moist regolith, and extensive fluvial erosive features. Unlike Earth, Titan’s hydrological-like cycle likely involves several constituents, primarily methane and ethane. Here the properties of a new Titan simulation facility are presented, including conceptual methodology, design, implementation, and performance results. The chamber maintains Titan’s surface temperature and pressure, and the sample cryogenic liquids undergoing experimentation are condensed within the chamber itself. During the experiments, the evaporation rates of the sample liquids are directly determined by continually measuring mass. Constituents are analyzed utilizing a Fourier Transform Infrared Spectroscopy (FTIR), and vapor concentrations are determined using a gas chromatograph fitted with a Flame Ionization Detector (FID). All pertinent data is logged via computer. Under laboratory conditions, the direct measurements of the evaporation rates of methane, ethane, and mixtures thereof can be achieved. Among the processes to be studied are the effects of regolith on transport from the subsurface to the atmosphere, the freezing point depression effects of dissolved nitrogen, and the solubility of various relevant organic compounds.  相似文献   

11.
Visible and near-infrared reflectance spectroscopy has proven a powerful tool for exploring the geology of Mars. Most of this data has been obtained from Earth, but the technique is ideally suited to orbital application, as proposed for the U.S. Mars Geoscience/Climatology Orbiter mission. Spectral reflectance in the near-UV and visible is highly diagnostic of ferric-iron mineralogy, and has shown that Fe3+ in the ubiquitous bright dust and soil is amorphous or poorly-crystalline. Other iron-oxide minerals, indicative of other modes or episodes of crustal alteration, may be found in spatially localized deposits. Clay minerals (hydroxylated silicates) have diagnostic vibrational absorptions throughout the near-infrared. While some form of bound water and/or OH has been known on Mars for many years, a new result presented here is the identification of structural OH in a dilute or poorly crystalline magnesian clay. Salts such as carbonates, sulfates, and nitrates have not yet been detected in martian soils but have diagnostic spectral features in the 3- to 4-μm region, best suited to Mars-orbital observation. Analysis of reflectance spectra of low-albedo regions is a primary source of evidence for a basaltic or ultramafic crust, with identification of abundant clinopyroxene and possible detection of other mafic minerals. The distinctive near-infrared spectral shape of dark regions indicates that the dark materials commonly consist of relatively unaltered rocks or rock fragments very thinly coated by (or mixed with) bright oxidized material similar to the global dust. Visible and near-infrared reflectance spectroscopy is also a sensitive technique for detecting and analyzing water ice, as has been demonstrated on Mars by observations of the north polar cap.  相似文献   

12.
Recent results of solar system planets observed with the Japanese X-ray astronomy satellite Suzaku are reviewed. Thanks to the low instrumental background and good energy resolution, X-ray CCDs onboard Suzaku are one of the best probes to study diffuse X-ray emission. An overview of the Suzaku data of Jupiter and Earth is presented, along with preliminary results of Mars. Firstly, diffuse hard X-ray emission is discovered in 1–5 keV at Jovian radiation belts. Its spectrum is represented by a power-law continuum with a photon index of ∼1.4. This emission could originate from inverse-Compton scattering of solar photons by tens MeV electrons. Secondly, variable diffuse soft X-rays are serendipitously found during observations in the directions of the north ecliptic pole and galactic ridge. Good time correlations with the solar wind and emission lines found in the X-ray spectra are firm evidences of a solar wind charge exchange emission with Earth’s exosphere. Thirdly, diffuse X-ray emission from Martian exosphere via the solar wind charge exchange is investigated for the first time at solar minimum. A stringent upper limit on the density of the Martian exosphere is placed from the Suzaku data.  相似文献   

13.
An SSM/I algorithm is developed for measuring cloud liquid water of raining and non-raining clouds. Cloud ice water corresponding to precipitation sized ice particles is obtained from the SSM/I scattering index which is calibrated against radar- derived ice water content. Smaller ice particles in upper level clouds are detected using scattering index based on SSM/T2 183±3 and 183±1 GHz channels which allow for removing water vapor emission. It is shown that SSM/I derived cloud liquid water distribution agrees well with GCM simulations, particularly in tropical latitudes.  相似文献   

14.
The use of in-situ resources plays an important role on future extraterrestrial human activities for the facility repair and habitat construction, especially in sustainable space exploration of Moon and Mars. A method of the metal welded with extraterrestrial regolith simulant using solar processing under ambient conditions is presented. Metal parts are made of Q235B ferroalloy and TA2 titanium alloy into standard tensile members according to the ASTM code. They are disconnected from the middle in advance, and then welded together with lunar and Martian regolith simulant under ambient conditions, respectively. The entire welding process and precautions are detailed. Additionally, the mechanical behavior of weldments is characterized regarding their tensile strength. Furthermore, the fusion zone of weldments is studied by Scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD) measurements. The results show that it is possible to weld metal parts together with extraterrestrial regolith simulant by the solar concentrator. The average ultimate tensile strength of ferroalloy specimens welded with lunar and Martian regolith simulant is 2.94 MPa and 1.66 MPa; The average ultimate tensile strength of titanium alloy specimens welded with lunar and Martian regolith simulant is 4.95 MPa and 2.59 MPa. Moreover, the failure mode of all weldments was brittle failure. The welding joints strength derives from the phases that the regolith as the solder fusing into ferroalloys in a homogeneous way and titanium alloys in an inhomogeneous way. The presented method may provide a new thought for astronaut assistance associating with repairing and fabricating in subsequent Moon and Mars missions.  相似文献   

15.
火星探测的微波遥感技术   总被引:1,自引:0,他引:1  
从微波遥感的角度出发,综述目前国际上对火星的探测现状,列出对微波遥感探测有影响的火星表层土壤、岩层的结构、分布及其介电特性等参数的已有研究结果,分析对火星地壳表层水(或冰)存在可能性及其分布状态的研究动向.结合地球表面微波遥感技术的最新进展,提出用主动与被动微波遥感探测火星表面浅层土壤物质状态和分层结构的可行性分析,初步研讨了火星表层是否有水(或冰)存在的探测方案.   相似文献   

16.
The seasonal CO2 cycle on Mars refers to the exchange of carbon dioxide between dry ice in the seasonal polar caps and gaseous carbon dioxide in the atmosphere. This review focuses on breakthroughs in understanding the process involving seasonal carbon dioxide phase changes that have occurred as a result of observations by Mars Global Surveyor.  相似文献   

17.
The interhemispheric coupling of the middle atmosphere general circulation is characterized by a global anomaly pattern of the zonal-mean temperature. This pattern reflects an anomalous stratospheric and mesospheric residual circulation, in which a weaker (stronger) stratospheric winter circulation is linked to an upward (downward) shift of its upper mesospheric branch reaching from the summer to the winter pole. This phenomenon is robust in observational data and several middle atmosphere general circulation models. In the present study, the recently proposed mechanism of the interhemispheric coupling is unequivocally proven within the framework of a zonally symmetric model that excludes any additional effects due to resolved waves and non-zonally propagating gravity waves. Two simulations are conducted that differ in the strength of the polar vortex. A weaker polar vortex results in a downward shift of the winter mesospheric gravity wave drag. This leads to changes also in the summer upper mesosphere via a feedback solely between gravity wave breaking and the zonal-mean state. The accompanying temperature anomaly reproduces the pattern of the interhemispheric coupling.  相似文献   

18.
One of the most characteristic features of the summer mesopause at high latitudes is the very low temperature. Earlier measurements have shown temperatures in the range down to 135 K around 86 km altitude, whereas the most recent in situ measurements have revealed temperatures still much lower than that in a rather wide altitude region. The reasons for these low temperatures are to be found in the dynamics of the strato- and mesospheres. Upwinds and gravity wave activity over the summer hemisphere cause efficient cooling of the atmosphere.Also other effects are caused by the updrafts. The vertical transport velocity for important minor constituents is increased, which for instance causes the concentration of water vapor around the mesopause to be enhanced by large factors. This situation is of major importance for the possibility of forming noctilucent clouds (NLC).NLC are believed to be composed of small water ice particles, which because of the low temperatures can be formed on existing condensation nuclei. Two of the main questions regarding the formation of NLC concern the water vapor budget of the upper mesosphere and the origin of the condensation nuclei.This paper gives a general introduction to mesospheric physics and composition. Some results from recent satellite and rocket experiments are reviewed and the campaign layout and the performed experiments within the MAP project CAMP are described. The results from the different experiments are presented in four accompanying papers on CAMP results.  相似文献   

19.
We study general relativistic effects on the bound orbits of solar sails. The combined effects of spacetime curvature and solar radiation pressure (SRP) lead to deviations from Kepler’s third law. Such kind of deviations also arise from frame dragging, the gravitational multipole moments of the sun, a net electric charge on the sun, and a positive cosmological constant. The SRP increases these deviations by several orders of magnitude, possibly rendering some of them detectable. We consider how the SRP modifies the perihelion shift of non-circular orbits, as well as the Lense-Thirring effect involving the precession of polar orbits. We investigate how the pitch angle for non-Keplerian orbits changes due to the partial absorption of light, general relativistic effects, and the oblateness of the sun. It is predicted that there is an analog of the Lense-Thirring effect for non-Keplerian orbits, in that the orbital plane precesses around the sun. We also consider the Poynting–Robertson effect and show that this effect can, in principle, be compensated for by an extremely small tilt of the solar sail.  相似文献   

20.
The aim of this paper is to quantify the performance of a flat solar sail to perform a double angular momentum reversal maneuver and produce a new class of two-dimensional, non-Keplerian orbits in the ecliptic plane. For a given pair of orbital parameters, the orbital period and the perihelion distance, it is possible to find the minimum solar sail characteristic acceleration required to fulfil a double angular momentum reversal trajectory. This problem is addressed using an optimal formulation and is solved through an indirect approach. The new trajectories are symmetrical with respect to the sun-perihelion line and exhibit a bean-like shape. Two main difficulties must be properly taken into account. On one side the sail is required to perform a rapid reorientation maneuver when it approaches the perihelion. Suitable simulations have shown that such a maneuver is feasible. In the second place the new trajectories require the use of high performance solar sails. For example, assuming an orbital period equal to 5 years, the required solar sail characteristic acceleration is greater than 3.4 mm/s2. Such a value, although beyond the currently available sail performance, is comparable to what is required by the original concept of H-reversal maneuvers introduced by Vulpetti in 1996.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号