首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 67 毫秒
1.
基于图论分割的多光谱图像非监督分类方法   总被引:2,自引:0,他引:2  
针对传统基于像素的多光谱遥感图像分类方法存在的"麻点"现象、采样成本高等问题,提出了一种基于图论分割的非监督分类方法,首先采用基于图论的分割算法,按局部邻近相似像素点分割成若干子区域,再以分割后子区域为基本单元,整体进行模糊 C均值聚类,最终实现对多光谱图像的非监督分类.实验证明,该方法结合了局部邻近像素点的相互关系以及相似区域的整体特征,有效解决了麻点问题,具有较高的分类精度和算法效率,降低了采样成本.  相似文献   

2.
高光谱图像(HSI)分类是遥感领域的基础应用之一。该任务旨在根据部分带类别标签的像素样本训练分类器,预测图像中剩余像素对应的类别标签。在实际应用中,由于人工标记样本成本过高,只能获得少量带标签的样本。针对少量样本无法准确描述数据分布从而导致训练过程过拟合的问题,提出一种基于记忆关联学习的小样本高光谱图像分类方法。考虑到无标签样本中包含大量与数据分布相关的信息,构建基于有标签样本记忆模块,并根据样本间的特征关联,利用不断更新的记忆模块学习无标签样本的潜在类别分布,构建无监督分类模型,并与传统的有监督分类模型进行联合学习。在多个高光谱图像分类数据集上的实验结果表明,所提方法能有效提升小样本高光谱图像分类的准确性。   相似文献   

3.
针对卫星遥感图像可用度分类问题,提出基于图像信息的云覆盖率、云厚度、云破碎度的云结构特征描述概念.研究了它们对于卫星遥感图像可用信息量的影响程度,构建了由厚度相关的云覆盖率及云破碎度构成正交可用度评估空间.并进一步分析了云结构特征与可用度之间的近似线性及单调特点,证实了所提描述方法对于可用度表征的合理性和有效性.通过与500幅不同可用度等级的专业人工判读结果比较,证实综合这3个变量的可用度判读结果与人工判读结果的准确度比较达到95%.该方法为建立卫星遥感图像可用度评估模型,自动分类得到用户需要的图像数据提供理论及技术支持.  相似文献   

4.
1.适用范围 1.1 本文件作为工作指南,建立了物理测量中评定和表示不确定度的一般规则,它可用于各准确度等级及各领域——从基础研究至商业。因此,本导则的原理可应用于广阔的测量领域包括:  相似文献   

5.
6.
在图像分类任务中,零样本图像分类问题已成为一个研究热点。为了解决零样本图像分类问题,采用一种基于生成对抗网络(GAN)的方法,通过生成未知类的图像特征使得零样本分类任务转换为传统的图像分类任务。同时对生成对抗网络中的判别网络做出改进,使其判别过程更加准确,从而进一步提高生成图像特征的质量。实验结果表明:所提方法在AWA、CUB和SUN数据集上的分类准确率分别提高了0.4%、0.4%和0.5%。因此,所提方法通过改进生成对抗网络,能够生成质量更好的图像特征,从而有效解决零样本图像分类问题。   相似文献   

7.
在高光谱遥感图像分类方法中,空间特征和光谱特征的融合可以有效地改善分类效果。针对单一空间特征的信息表达不充分问题,提出了一种联合多种空间特征的高光谱图像空谱分类方法。利用超像素信息对分类结果进行后处理去掉椒盐噪声,并创造性地将超像素信息应用于分类前处理,提出了一种利用超像素信息对像素点的特征向量进行线性加权融合的方法。试验结果表明,所提方法的性能优于目前的通常方法。  相似文献   

8.
液体压力计是利用液柱自重产生的压力与被测压力平衡的原理而制成的压力计。由于其具有较好的稳定性和不确定度,因此它被广泛用作压力计量的基标准器具,在我国低压段压力量值传递中担当重要角色。从其工作原理和数学模型入手,对其不确定度分析方法进行了阐述。  相似文献   

9.
阐述五测头误差分离法在普通机床上实现圆柱度误差在位测量的原理和方法,并对测量不确定度进行了全面的分析和估计,明确了测量精度范围。此不确定度分析有助于机床误差的修正和补偿,对其它形状误差的精密测量和误差分离技术的实际应用具有普遍意义。  相似文献   

10.
不确定度是测量质量的重要指标。根据测量分布,提出了两类不确定度的评定方法,阐明了合成不确定度与总不确定度的计算和性质,并举出了应用例子。  相似文献   

11.
核空间聚类在图像纹理分类中的简化算法   总被引:2,自引:0,他引:2  
模糊c均值聚类已广泛应用于模糊模式识别领域,但对于线性不可分数据并不适用.在核方法中通过将输入数据经过非线性映射投影到高维特征空间来解决非线性分类的问题.将传统的模糊c均值聚类算法应用于核空间中,对线性不可分的样本进行了核空间聚类的分类实验,得到了正确的分类结果.由于图像分类中分类样本(对应图像像素)数目庞大,造成了核空间聚类算法中特征距离的计算量过大.因此,在核空间聚类的基础上,提出了对图像先进行过分割,再对过分割的图像块进行核空间聚类的方法,大大降低了高维空间特征距离计算的运算成本,并取得了良好的分类效果.   相似文献   

12.
为了提高视频卫星对运动车辆的检测质量,在经典视觉背景提取器(ViBE)算法的基础上,结合遥感的面向对象分类技术,从提升正确检测运动目标数量和抑制虚假运动目标检测数量两个方面着手,提出了一种新的运动车辆检测方法(VOMVD)。首先通过优化ViBE模型参数,尽可能多地获取真实运动目标,但这在一定程度引入了许多的虚假目标。研究继而依据影像上地面小尺度运动目标和道路的依存关系,采用面向对象的分类方法,基于光谱、纹理、空间属性,构建了均值、标准差、卷积核内平均灰度值、卷积核内平均信息熵、面积、长度、紧密度、延伸度等8个特征,用于提取道路信息,以此掩膜ViBE提取的虚假运动目标和伪运动目标。结果表明,基于本研究提出的视频卫星运动目标检测方法较之三帧差分法、ViBE检测方法等,其精度有明显提升。在本研究中,三帧差分法、ViBE和VOMVD对运动目标的检测精度P分别为70.91%,61.49%和85.71%,召回率R分别为84.78%,98.91%和97.83%,F值分别为77.23%,75.83%和91.37%,有效提升了方法对运动目标的检测效果。  相似文献   

13.
改进独立成分分析在高光谱图像分类中的应用   总被引:1,自引:0,他引:1  
针对独立成分分析在使用常规数值求解时容易陷入局部最优解的问题,以及采用神经学习算法时神经元激活函数的限制问题,将遗传算法与独立成分分析相结合,并对模型进行改进,提出了适合于高光谱数据无监督分类的模型.该算法采用最大化非高斯性进行成分的统计独立性度量,利用四阶累积量-峰度作为遗传算法的适应度函数.在应用分析中,将该算法应用于推扫式高光谱成像仪(PHI,Push-broom Hyperspectral technique Imager)数据地物分类能够获得全局最优解,在没有先验信息情况下实现地物的精细分类;与传统高光谱无监督分类算法比较,表明该算法的适用性,并具有更高的分类精度和准确性.   相似文献   

14.
基于奇异值分解的遥感图像融合性能评价   总被引:2,自引:0,他引:2  
研究遥感图像融合性能的客观评价问题,分析当前遥感图像融合效果评估方法特点的基础上,提出一种新的遥感图像融合效果评估方法——基于奇异值分解(SVD, Singular Value Decomposition)的方法.利用源图像与融合结果图像的奇异值差异,测量它们之间能量信息失真情况,从而进行融合算法的评估.仿真实验从两方面入手,当融合源图像中含有SAR(Synthetic Aperlure Radar)图像时,对比Piella和Xydeas评估方法较为有效;另一方面,对多类型传感器、不同方法的像素级融合结果进行评估,与主观评价结果对比具有较高的一致性.这种客观评估方法能够较好地反映多类遥感图像融合的质量,是一种实现简单、高效、较为通用的遥感图像融合效果评估方法.   相似文献   

15.
目前JPEG2000等图像压缩方法受制于压缩倍数的限制,无法满足用户对海量遥感数据的实时传输要求,需要进一步减少高分辨率遥感图像产生的数据量,以满足遥感图像数据的空间传输要求。针对此情况提出了一种基于信息隐藏的遥感图像分块压缩方法,利用图像块的相似性判决出基准图像块和相似图像块,将相似图像块的编号隐藏在基准图像块中,只对基准图像块进行JPEG2000压缩。采用标准图像库作为样本图像进行仿真,结果表明,该方法将样本图像压缩前的数据量减少1/3,同时将该样本图像的压缩比提高1.5倍。  相似文献   

16.
针对遥感影像中类别不均衡的小目标分割效果不理想的问题,提出了一种类别不均衡小目标二分类分割的损失函数——TopPixelLoss损失函数。首先计算出每个像素的交叉熵,然后将所有像素的交叉熵按从大到小进行排序,随后确定一个K值作为阈值,筛选出前K个交叉熵最大的像素,最后对于筛选出的K个像素交叉熵取平均,做为损失值。在ISPRS 提供的 Vaihingen 数据集上,使用PSPNet网络与普通交叉熵、FocalLoss、TopPixelLoss三种损失函数分别对车辆进行二分类分割试验。结果表明,不同的K值,使用TopPixelLoss损失函数的平均交并比(MIoU)、F1-score、准确度(ACC)都最高;当K值为5×104时效果最佳,MIoU、F1-score、ACC分别比FocalLoss提高了3.0%、5.0%、0.1%。TopPixelLoss损失函数是一种针对类别不均衡分割非常有效的损失函数  相似文献   

17.
基于局部线性嵌入的高光谱影像特征提取算法   总被引:2,自引:0,他引:2  
特征提取能够消除冗余信息,提高高光谱数据处理的精度和计算效率,是分类等分析必要的预处理手段.传统特征提取算法基于线性变换,无法准确描述高、低维特征空间的关系,因此采用一种新型非线性特征提取算法,即局部线性嵌入(LLE,Locally Linear Em-bedding),挖掘高光谱影像的本征信息.针对分类问题,使用训练样本类别属性修正距离矩阵,并借鉴LLE计算未知样本低维映射的方法求解测试样本的特征向量,实现监督局部线性嵌入(SLLE,Supervised Locally Linear Embedding).使用机载可见光/红外成像光谱仪数据,与3种分类算法结合进行测试,实验结果表明:SLLE优于线性特征提取算法,能够解决高光谱影像的小样本分类问题.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号