首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The paper discusses the possibility of particle acceleration up to high energies in relativistic waves generated by various explosive processes in the interstellar medium. We propose to use the surfatron mechanism of acceleration (surfing) of charged particles trapped in the front of relativistic waves as a generator of high-energy cosmic rays (CRs). Conditions under which surfing in the waves under consideration can be made are studied thoroughly. Ultra-high-energy CRs (up to 1020 eV) are shown to be obtained due to the surfing in relativistic plane and spherical waves. Surfing is supposed to take place in nonlinear Langmuir waves excited by powerful electromagnetic radiation or relativistic beams of charged particles, as well as in strong shock waves generated by relativistic jets or spherical formations that expand fast (fireballs).  相似文献   

2.
Measurements of the composition of the cosmic rays at high energies, and of the energy spectra of the individual components provide the basis for the understanding of the sources, of the acceleration mechanism, and of the galactic containment of these particles. We briefly review the presently available information, and we describe a recent measurement on the Space Shuttle that we performed in order to substantially extend the range of energies in which the elemental composition is known. We present and discuss the results, and we also summarize and discuss recent data on the electron component of cosmic rays. The body of data now available contains several features that are difficult to explain within current models of galactic shock acceleration and “leaky box” containment. We emphasize the need for further measurements, and we briefly discuss possible opportunities for future work.  相似文献   

3.
4.
The centennial anniversary of the discovery of cosmic rays was in 2012. Since this discovery considerable progress has been made on several aspects related to galactic cosmic rays in the heliosphere. It is known that they encounter a turbulent solar wind with an imbedded heliospheric magnetic field when entering the Sun’s domain. This leads to significant global and temporal changes in their intensity inside the heliosphere, a process known as the solar modulation of cosmic rays. The prediction of a charge-sign dependent effect in solar modulation in the late 1970s and the confirmatory observational discoveries can also be considered as a milestone. A short review is given of these predictions based on theoretical and numerical modelling work, the observational confirmation and related issues.  相似文献   

5.
Based on the fact that the chemical composition of cosmic rays in their sources is similar to that of the interstellar clouds or grains which are relatively rich in refractory and siderophile elements as compared to the chemical composition of the solar atmosphere, it is shown that cosmic ray source matter can be identified as the dusts or grains observed in the envelope of red supergiants or the matter originally ejected from supernova explosions and that it must have passed through a state as reaching to 1000K or less in temperature.  相似文献   

6.
The impact of the solar activity on the heliosphere has a strong influence on the modulation of the flux of low energy galactic cosmic rays arriving at Earth. Different instruments, such as neutron monitors or muon detectors, have been recording the variability of the cosmic ray flux at ground level for several decades. Although the Pierre Auger Observatory was designed to observe cosmic rays at the highest energies, it also records the count rates of low energy secondary particles (the scaler mode) for the self-calibration of its surface detector array. From observations using the scaler mode at the Pierre Auger Observatory, modulation of galactic cosmic rays due to solar transient activity has been observed (e.g., Forbush decreases). Due to the high total count rate coming from the combined area of its detectors, the Pierre Auger Observatory (its detectors have a total area greater than 16,000 m2) detects a flux of secondary particles of the order of ∼108 counts per minute. Time variations of the cosmic ray flux related to the activity of the heliosphere can be determined with high accuracy. In this paper we briefly describe the scaler mode and analyze a Forbush decrease together with the interplanetary coronal mass ejection that originated it. The Auger scaler data are now publicly available.  相似文献   

7.
8.
The spatial distributions of galactic and anomalous cosmic rays in the heliosphere at the solar minima of Cycles 20/22 (qA > 0) and of Cycle 21 (qA < 0) are studied, using data from IMP 8, Voyagers 1/2 and Pioneer 10. It is found that the radial dependences of intensities J can be approximated by a power of radial distance r as J  rα with a different value of a constant in the inner and outer heliosphere with a transition at a radial distance of 10–15 AU. To study the physical meaning of these radial intensity profiles we examined the rigidity dependences of the intensity gradients by determining the particle mean free paths, using a simple one-dimensional modulation model. The particle mean free path λ was assumed to be a separable function of distance of the form rγ and rigidity R of Rδ over the range of 0.5–3.0 GV in the inner and outer heliosphere. It was shown that λ of rigidity dependence of R1.6 determined for Cycle 20/22 (qA > 0) with anomalous He is about 4–5 times larger than that of Cycle 21 (qA < 0) with R0.9 at around 1 GV in the outer heliosphere, and that the radial dependences are r1.4 and r1.1, respectively, for Cycles 20/22 and for Cycle 21.  相似文献   

9.
The different types of the data recorded in the experiment of the regular balloon monitoring of cosmic rays (carried out since 1957 by Lebedev Physical Institute, Moscow, Russia, in several locations) are described. So called detailed information (the form of each pulse detected by the ground-based receiver) recorded during the last 12 years is discussed in more details. The use of these data both for getting and correcting the standard results of the experiment and for obtaining some additional information on the cosmic rays in the Earth’s atmosphere is considered.  相似文献   

10.
11.
12.
During the 3rd main expedition on board the “Salyut-6” orbital station in 1979 the integral characteristics of cosmic radiation were measured in various positions inside the manned modules (experiment “Integral”). Measurements were performed with thermoluminescent dosimeters, photographic films and solid state plastic detectors supplied for the experiment by specialists of the USSR, Bulgaria, Hungary, GDR and Romania. The dose gradient inside the manned modules of the station amounted to 70 % for long intervals of time. During the experimental period the dose rate inside the station was 15 to 30 mrad per day. The mean flux of particles with z 6 and LET 200 keV/μm was found to be 0.22 cm−2 day−1.  相似文献   

13.
Preliminary results are reported for gamma ray observations of the galactic center region made during a 15 hour balloon flight from Alice Springs, Australia on April 18, 1979. The observations were carried out with the UCR double-scatter gamma-ray telescope at energies of 1 to 30 MeV. The observations are compatible with a galactic source of approximately equal brightness along the region 300°<ℓII<60°. The energy distribution joins smoothly to previous spark chamber results at energies above 30 MeV and to scintillator results below 1 MeV. It appears to be a combination of nuclear gamma ray lines superimposed on a bremsstrahlung spectrum with a power law (1.3±.7) × 10−3 E(1.7±.2). The 12C* line at 4.4 MeV appears to be present with a significance of about 16σ. The flux in the line is (6±3) × 10−4photons cm−2s−1rad−1. The oxygen line at 6.1 MeV does not seem to appear significantly above background.  相似文献   

14.
15.
16.
Gravitational waves are ripples in space–time predicted by Albert Einstein's general relativity and provide a new way to understand the universe. Space-borne detectors of gravitational waves, extending to very large scales, can effectively detect the middle and low-frequency gravitational wave source with the frequency band of 0.1 mHz–1 Hz. The test masses are used to make an inertial reference point in the detection of gravitational waves. Currently, there are few studies concerning the ideal release position for the test masses in the detection of gravitational waves. In this study, we give a general solution for test mass release points to minimize the relative motion between the test mass and the satellite mass center. Moreover, we discuss the situation when the release point equation is not satisfied, and the ideal release point of the along-track. Finally, we report on simulations that verify the accuracy of the theoretical derivation.  相似文献   

17.
18.
The relative contribution to the γ-ray background of different types of sources, namely Seyfert Galaxies, Quasars, BL Lac objects, radio galaxies and field galaxies is estimated under the hypothesis that the cosmic diffuse flux is the result of a superposition of many unresolved galaxies. The γ-ray data indicate that the Seyfert volume emissivity matches that of the diffuse background at few hundred keV and exceeds it at higher energies by as much as a factor of about 4. Whilst normal galaxies contribute less than 0.1%, BL Lac objects, Quasars and Radio Galaxies may contribute as much as 5–10% each, even without significant evolution. In this paper we explore different ways of reconciling the observational data on active galaxies with the measured diffuse background level.  相似文献   

19.
Activity of auxin polar transport in inflorescence axes of Arabidopsis thaliana grown under simulated microgravity conditions was studied in relation to the growth and development. Seeds were germinated and allowed to grow on an agar medium in test tubes on a horizontal clinostat. Horizontal clinostat rotation substantially reduced the growth of inflorescence axes and the productivity of seeds of Arabidopsis thaliana (ecotypes Landsberg erecta and Columbia), although it little affected seed germination, development of rosette leaves and flowering. The activity of auxin polar transport in inflorescence axes decreased when Arabidopsis plants were grown on a horizontal clinostat from germination stage, being ca. 60% of 1 g control. On the other hand, the auxin polar transport in inflorescence axes of Arabidopsis grown in 1 g conditions was not affected when the segments were exposed to various gravistimuli, including 3-dimensional clinorotation, during transport experiments. Pin-formed mutant of Arabidopsis, having a unique structure of the inflorescence axis with no flower and extremely low levels of the activity of auxin polar transport in inflorescence axes and endogenous auxin, did not continue its vegetative growth under clinostat rotation. These facts suggest that the development of the system of auxin polar transport in Arabidopsis is affected by microgravity, resulting in the inhibition of growth and development, especially during reproductive growth.  相似文献   

20.
Coupling between the Laplace and the Marangoni effects in a parallelly moving diffusion system is studied. Convective instability arises from either pure Marangoni effect or Laplace effect which is always influenced by the Marangoni contribution. Near to , a common stable region is found under disturbances of concentrations and micro interface deformations. Gravity plays a role through the Laplace condition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号