首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
The paper discusses the possibility of particle acceleration up to high energies in relativistic waves generated by various explosive processes in the interstellar medium. We propose to use the surfatron mechanism of acceleration (surfing) of charged particles trapped in the front of relativistic waves as a generator of high-energy cosmic rays (CRs). Conditions under which surfing in the waves under consideration can be made are studied thoroughly. Ultra-high-energy CRs (up to 1020 eV) are shown to be obtained due to the surfing in relativistic plane and spherical waves. Surfing is supposed to take place in nonlinear Langmuir waves excited by powerful electromagnetic radiation or relativistic beams of charged particles, as well as in strong shock waves generated by relativistic jets or spherical formations that expand fast (fireballs).  相似文献   

2.
The composition of anomalous cosmic rays (ACR), is thought to reflect that of the neutral atoms in the very local interstellar medium, such as helium, nitrogen and neon. Recent observations in the outer heliosphere have provided the first unambiguous evidence for ACR argon, carbon and hydrogen, as well, and a method has been developed to relate the ACR abundances to those of the interstellar medium. The observations also indicate persistent negative latitudinal gradients, opposite to that observed by Pioneer 11 during the previous minimum in solar activity. These and other results are consistent with the presence of gradient and curvature drift during solar minimum periods when the tilt of the interplanetary neutral sheet is small.  相似文献   

3.
Measurements of the composition of the cosmic rays at high energies, and of the energy spectra of the individual components provide the basis for the understanding of the sources, of the acceleration mechanism, and of the galactic containment of these particles. We briefly review the presently available information, and we describe a recent measurement on the Space Shuttle that we performed in order to substantially extend the range of energies in which the elemental composition is known. We present and discuss the results, and we also summarize and discuss recent data on the electron component of cosmic rays. The body of data now available contains several features that are difficult to explain within current models of galactic shock acceleration and “leaky box” containment. We emphasize the need for further measurements, and we briefly discuss possible opportunities for future work.  相似文献   

4.
The spectrum of turbulent pulsations induced in the atmosphere by the galactic cosmic rays is defined. A possible manifestation of genesis of fractal dimensions in the system of “spectrum of turbulent pulsations of cosmic plasma – galactic cosmic rays’ spectrum – spectrum of atmospheric turbulent pulsations” is analyzed.  相似文献   

5.
The radial distribution of the high-energy (70 MeV-5 GeV) gamma-ray emissivity in the outer Milky Way is derived. The kinematics of HI are used to construct column-density maps in three galacto-centric distance ranges in the outer Galaxy. These maps are used in combination with COS-B gamma-ray data to determine gamma-ray emissivities in these distance ranges. A steep negative gradient of the emissivity for the 70 MeV-150 MeV energy range is found in the outer Galaxy. The emissivity for the 300 MeV-5 GeV range is found to be approximately constant (within 20%) and equal to the local value out to large (20 kpc) galacto-centric distances. These results imply a hardening of the gamma-ray spectrum with increrasing distance and for R > 16 kpc the spectrum is shown to be consistent with a π°-decay spectrum with the intensity expected from the local measurement of the cosmic-ray nuclei spectrum. The energy-dependent decrease is interpreted as a steep gradient in the cosmic-ray electron density and a near constancy of the nuclear component. The galactic origin of electrons with energies up to several hundreds of MeV is confirmed, while for cosmic-ray nuclei with energies of a few GeV either confinement in a large galactic halo or an extragalactic origin is suggested by the data.  相似文献   

6.
7.
The centennial anniversary of the discovery of cosmic rays was in 2012. Since this discovery considerable progress has been made on several aspects related to galactic cosmic rays in the heliosphere. It is known that they encounter a turbulent solar wind with an imbedded heliospheric magnetic field when entering the Sun’s domain. This leads to significant global and temporal changes in their intensity inside the heliosphere, a process known as the solar modulation of cosmic rays. The prediction of a charge-sign dependent effect in solar modulation in the late 1970s and the confirmatory observational discoveries can also be considered as a milestone. A short review is given of these predictions based on theoretical and numerical modelling work, the observational confirmation and related issues.  相似文献   

8.
Based on the fact that the chemical composition of cosmic rays in their sources is similar to that of the interstellar clouds or grains which are relatively rich in refractory and siderophile elements as compared to the chemical composition of the solar atmosphere, it is shown that cosmic ray source matter can be identified as the dusts or grains observed in the envelope of red supergiants or the matter originally ejected from supernova explosions and that it must have passed through a state as reaching to 1000K or less in temperature.  相似文献   

9.
The impact of the solar activity on the heliosphere has a strong influence on the modulation of the flux of low energy galactic cosmic rays arriving at Earth. Different instruments, such as neutron monitors or muon detectors, have been recording the variability of the cosmic ray flux at ground level for several decades. Although the Pierre Auger Observatory was designed to observe cosmic rays at the highest energies, it also records the count rates of low energy secondary particles (the scaler mode) for the self-calibration of its surface detector array. From observations using the scaler mode at the Pierre Auger Observatory, modulation of galactic cosmic rays due to solar transient activity has been observed (e.g., Forbush decreases). Due to the high total count rate coming from the combined area of its detectors, the Pierre Auger Observatory (its detectors have a total area greater than 16,000 m2) detects a flux of secondary particles of the order of ∼108 counts per minute. Time variations of the cosmic ray flux related to the activity of the heliosphere can be determined with high accuracy. In this paper we briefly describe the scaler mode and analyze a Forbush decrease together with the interplanetary coronal mass ejection that originated it. The Auger scaler data are now publicly available.  相似文献   

10.
Relative abundances of sub-iron (Sc-Cr) to iron nuclei in low energy (50–100 MeV/N) galactic cosmic rays have been determined from an analysis of about 100 events of heavy ions (Z = 10−28) recorded in a detector assembly flown in the Anuradha cosmic ray experiment in the Spacelab-3 on a six day mission in April–May 1985. The measured abundance ratio of (Sc-Cr)/Fe nuclei in 50–100 MeV/N energy range is 1.1 ± 0.3, and the present result of enhanced ratio of sub-iron to iron nuclei is in agreement with other experimental results in 200–800 MeV/N range. The over-abundance of iron secondaries at these low energies cannot be explained in the conventional models for propagation of cosmic rays. Available experimental data indicate a very different time history for the low energy iron-group, as compared to those of lighter nuclei in galactic cosmic rays.  相似文献   

11.
12.
The spatial distributions of galactic and anomalous cosmic rays in the heliosphere at the solar minima of Cycles 20/22 (qA > 0) and of Cycle 21 (qA < 0) are studied, using data from IMP 8, Voyagers 1/2 and Pioneer 10. It is found that the radial dependences of intensities J can be approximated by a power of radial distance r as J  rα with a different value of a constant in the inner and outer heliosphere with a transition at a radial distance of 10–15 AU. To study the physical meaning of these radial intensity profiles we examined the rigidity dependences of the intensity gradients by determining the particle mean free paths, using a simple one-dimensional modulation model. The particle mean free path λ was assumed to be a separable function of distance of the form rγ and rigidity R of Rδ over the range of 0.5–3.0 GV in the inner and outer heliosphere. It was shown that λ of rigidity dependence of R1.6 determined for Cycle 20/22 (qA > 0) with anomalous He is about 4–5 times larger than that of Cycle 21 (qA < 0) with R0.9 at around 1 GV in the outer heliosphere, and that the radial dependences are r1.4 and r1.1, respectively, for Cycles 20/22 and for Cycle 21.  相似文献   

13.
The different types of the data recorded in the experiment of the regular balloon monitoring of cosmic rays (carried out since 1957 by Lebedev Physical Institute, Moscow, Russia, in several locations) are described. So called detailed information (the form of each pulse detected by the ground-based receiver) recorded during the last 12 years is discussed in more details. The use of these data both for getting and correcting the standard results of the experiment and for obtaining some additional information on the cosmic rays in the Earth’s atmosphere is considered.  相似文献   

14.
Observations made with the two Voyager spacecraft confirmed that the solar wind decelerates to form the heliospheric termination shock and that it has begun its merger with the local interstellar medium. The compression ratio of this shock affects galactic cosmic rays when they enter the heliosphere. Hydrodynamic (HD) models show that the compression ratio can have a significant latitude dependence; with the largest value in the nose direction of the heliosphere, becoming significantly less towards the polar regions. The modulation effects of such large latitude dependence are studied, using a well-established numerical drift and shock modulation model. We focus on computing the modulated spectra for galactic protons with emphasis on the radial and polar gradients in the equatorial plane and at a polar angle of θ = 55°, corresponding to the heliolatitude of Voyager 1. Two sets of solutions are computed and compared each time; with and without a latitude dependence for the compression ratio. All computations are done for the two magnetic field polarity cycles assuming solar minimum conditions. Including the termination shock in the model allows the study of the re-acceleration of galactic protons in the outer heliosphere. We find that for the A < 0 polarity cycle the intensity between ∼200 MeV and ∼1 GeV in the vicinity of the shock in the heliospheric equatorial plane may exceed the local interstellar value specified at the heliopause. Unfortunately, at θ = 55°, the effect is reduced. This seems not possible during an A > 0 cycle because significant modulation is then predicted between the heliopause and the termination shock, depending on how strong global gradient and curvature drifts are in the heliosheath. The overall effect of the shock on galactic protons in the equatorial plane is to reduce the total modulation as a function of radial distance with respect to the interstellar spectrum. Making the compression ratio latitude dependent enhances these effects at energies E < 200 MeV in the equatorial plane. At larger heliolatitudes these effects are even more significant. The differences in the modulation between the two drift cycles are compelling when the compression ratio is made latitude dependent but at Earth this effect is insignificant. A general result is that the computed radial gradient changes for galactic protons at and close to the TS and that these changes are polarity dependent. In line with previous work, large polarity dependent effects are predicted for the inner heliosphere and also close to the shock’s position in the equatorial plane. In contrast, at θ = 55°, the largest polarity effect occurs in the middle heliosphere (50 AU), enhanced by the latitude dependence of the compression ratio. At this latitude, the amount of proton modulation between the heliopause and the termination shock is much reduced. If galactic cosmic rays were to experience some diffusive shock acceleration over the 100–1000 MeV range at the shock, the radial gradient should change its sign in the vicinity of the shock, how large, depends on the compression ratio and the amount of drifts taking place in the outer heliosphere. The effective polar gradient shows a strong polarity dependence at Earth but this dissipates at θ = 55°, especially with increasing radial distance. This tendency is enhanced by making the compression ratio latitude dependent.  相似文献   

15.
16.
17.
During the 3rd main expedition on board the “Salyut-6” orbital station in 1979 the integral characteristics of cosmic radiation were measured in various positions inside the manned modules (experiment “Integral”). Measurements were performed with thermoluminescent dosimeters, photographic films and solid state plastic detectors supplied for the experiment by specialists of the USSR, Bulgaria, Hungary, GDR and Romania. The dose gradient inside the manned modules of the station amounted to 70 % for long intervals of time. During the experimental period the dose rate inside the station was 15 to 30 mrad per day. The mean flux of particles with z 6 and LET 200 keV/μm was found to be 0.22 cm−2 day−1.  相似文献   

18.
Preliminary results are reported for gamma ray observations of the galactic center region made during a 15 hour balloon flight from Alice Springs, Australia on April 18, 1979. The observations were carried out with the UCR double-scatter gamma-ray telescope at energies of 1 to 30 MeV. The observations are compatible with a galactic source of approximately equal brightness along the region 300°<ℓII<60°. The energy distribution joins smoothly to previous spark chamber results at energies above 30 MeV and to scintillator results below 1 MeV. It appears to be a combination of nuclear gamma ray lines superimposed on a bremsstrahlung spectrum with a power law (1.3±.7) × 10−3 E(1.7±.2). The 12C* line at 4.4 MeV appears to be present with a significance of about 16σ. The flux in the line is (6±3) × 10−4photons cm−2s−1rad−1. The oxygen line at 6.1 MeV does not seem to appear significantly above background.  相似文献   

19.
During the observation of solar cosmic rays on the Prognoz 6 and Helios 1 and 2 spacecrafts, several events with anomalous composition of accelerated particles (higher abundance of 3-He or Fe nuclei) occurred. We found seven such events from the period September to December 1977 for which data from the Prognoz 6 solar X-ray photometer are available. This material together with published optical and radio data from terrestrial observatories enabled us to identify more reliably the source flares and describe their characteristics. It turned out that the character of X-ray emission accompanying the emission of accelerated particles with anomalous composition shows no pronounced difference from other flares. No correlation has been found among the ratio 3-He/4-He and the angular distance between the field lines connected with the source flare and the place of observation. If a solar flare with anomalous ratio 3-He/4-He appears in a given active region, this region will probably produce other anomalous events.  相似文献   

20.
Gravitational waves are ripples in space–time predicted by Albert Einstein's general relativity and provide a new way to understand the universe. Space-borne detectors of gravitational waves, extending to very large scales, can effectively detect the middle and low-frequency gravitational wave source with the frequency band of 0.1 mHz–1 Hz. The test masses are used to make an inertial reference point in the detection of gravitational waves. Currently, there are few studies concerning the ideal release position for the test masses in the detection of gravitational waves. In this study, we give a general solution for test mass release points to minimize the relative motion between the test mass and the satellite mass center. Moreover, we discuss the situation when the release point equation is not satisfied, and the ideal release point of the along-track. Finally, we report on simulations that verify the accuracy of the theoretical derivation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号