首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Active exploration of the space leads to growth of a near-Earth space pollution. The frequency of the registered collisions of space debris with functional satellites highly increased during last 10 years. As a rule a large space debris can be observed from the Earth and catalogued, then it is possible to avoid collision with the active spacecraft. However every large debris is a potential source of a numerous small debris particles. To reduce debris population in the near Earth space the large debris should be removed from working orbits. The active debris removal technique is considered that intend to use a tethered orbital transfer vehicle, or a space tug attached by a tether to the space debris. This paper focuses on the dynamics of the space debris with flexible appendages. Mathematical model of the system is derived using the Lagrange formalism. Several numerical examples are presented to illustrate the mutual influence of the oscillations of flexible appendages and the oscillations of a tether. It is shown that flexible appendages can have a significant influence on the attitude motion of the space debris and the safety of the transportation process.  相似文献   

2.
通信卫星逐步由高轨地球同步轨道卫星向高、中、低轨结合的全球覆盖卫星方向发展,多业务和多重覆盖的发展趋势对通信卫星的灵活性提出了更高的要求。通信卫星配备灵活载荷已经成为重要发展方向,对面向个人用户的高通量通信卫星及高、中、低轨结合的组网通信卫星来说尤为重要。配备灵活载荷的通信卫星能实现端到端业务,能灵活调整覆盖区,实现灵活组网,并提升资源利用率。分析了国内外通信卫星灵活载荷的发展动态,介绍了通信卫星灵活载荷的技术特点,并给出了有效载荷方案,最后阐述了通信卫星灵活载荷发展的关键技术及发展思路。  相似文献   

3.
The paper presents a novel noncertainty-equivalent adaptive (NCEA) control system for the pitch attitude control of satellites in elliptic orbits using solar radiation pressure (SRP). The satellite is equipped with two identical solar flaps to produce control moments. The adaptive law is based on the attractive manifold design using filtered signals for synthesis, which is a modification of the immersion and invariance (I&I) method. The control system has a modular controller–estimator structure and has separate tunable gains. A special feature of this NCEA law is that the trajectories of the satellite converge to a manifold in an extended state space, and the adaptive law recovers the performance of a deterministic controller. This recovery of performance cannot be obtained with certainty-equivalent adaptive (CEA) laws. Simulation results are presented which show that the NCEA law accomplishes precise attitude control of the satellite in an elliptic orbit, despite large parameter uncertainties.  相似文献   

4.
The attitude determination capability of a nano satellite is limited by a lack of traditional high performance attitude sensors, a result of having small budgets for mass and power. Attitude determination can still be performed on a nano satellite with low fidelity sensors, but an accurate model of the spacecraft attitude dynamics is required. The passive magnetic stabilization systems commonly employed in nano satellites are known to introduce uncertainties in the parameters of the attitude dynamics model that cannot easily be resolved prior to launch. In this paper, a batch estimation problem is formulated that simultaneously solves for the attitude of the spacecraft and performs parameter estimation on the magnetic properties of the magnetic materials using only a measurement of the solar vector. The estimation technique is applied to data from NASA Ames Research Center's O/OREOS nano satellite and the University of Michigan's RAX-1 nano satellite, where clear differences are detected between the magnetic properties as measured before launch and those that fit the observed data. To date this is the first known on-orbit verification of the attitude dynamics model of a passively magnetically stabilized spacecraft.  相似文献   

5.
《Acta Astronautica》2010,66(11-12):1813-1825
In this paper a heuristic design strategy for stabilizing the satellite attitude has been proposed. It is assumed that the satellite is actuated by a set of mutually perpendicular magnetic coils. Using well-known Lyapunov direct stability method it is shown that the proposed controller causes to a global asymptotic stable system for all near polar orbits. The design procedure is based on analyzing of the conceptual effects of magnetic coils on the satellite attitude motion. Considering these effects lead to some intuitive results which determine the global stabilizing control law. The performance and robustness of the designed controller against actuators saturation and quantization error have been verified using a real-time-hardware–software in-loop (RTHSIL) simulation results. These results show that the global stability can be achieved although some disturbances and restrictions exist. This stabilizing controller can be simply combined with a linear explicit model predictive controller (EMPC) to achieve a full three-axis control law.  相似文献   

6.
In this paper a heuristic design strategy for stabilizing the satellite attitude has been proposed. It is assumed that the satellite is actuated by a set of mutually perpendicular magnetic coils. Using well-known Lyapunov direct stability method it is shown that the proposed controller causes to a global asymptotic stable system for all near polar orbits. The design procedure is based on analyzing of the conceptual effects of magnetic coils on the satellite attitude motion. Considering these effects lead to some intuitive results which determine the global stabilizing control law. The performance and robustness of the designed controller against actuators saturation and quantization error have been verified using a real-time-hardware–software in-loop (RTHSIL) simulation results. These results show that the global stability can be achieved although some disturbances and restrictions exist. This stabilizing controller can be simply combined with a linear explicit model predictive controller (EMPC) to achieve a full three-axis control law.  相似文献   

7.
研究由中心刚体和可伸缩柔性附件组成的非线性刚柔耦合系统,不同于大多数文献只研究柔性附件的横向弯曲变形对系统动态特性的影响,同时考虑了柔性附件的拉伸变形、截面转角变化同弯曲变形的相互耦合作用,并且以非线性几何关系作为基本出发点,建立了伸缩运动同柔性变形、姿态运动之间的非线性耦合动力学模型,然后基于能量积分和动量矩积分构造首次积分,分析了非线性耦合系统的运动稳定性。  相似文献   

8.
9.
《Acta Astronautica》1986,13(8):507-514
We present a control law for large-angle single-axis rotational maneuvers of a spacecraft-beamtip body (an antenna or a reflector) configuration. It is assumed that an unknown but bounded disturbance torque is acting on the spacecraft. A model reference adaptive torque control law is derived for the slewing of the space vehicle. This controller includes a dynamic system in the feedback path and requires only attitude angle and rate of the space vehicle for feedback. For damping out the elastic motion excited by the slewing maneuver, a stabilizer is designed assuming that a torquer and a force actuator are available at the tip body. The stabilizer uses only the flexible modes for the synthesis of the control law. Simulation results are presented to show that fast, large-angle rotational maneuvers can be performed using the adaptive controller and the stabilizer in spite of the presence of continuously acting unknown torque on the spacecraft.  相似文献   

10.
The present article deals with methods to determine the dynamical characteristics of satellites with passive and semipassive attitude control systems (ACS). On the basis of determined dynamical characteristics the principal parameters of ACS are obtained. The ACS interacting with the geomagnetic are considered here. It's reputed the ACS of such kind are wide used and simple one. Analytical relationships of these characteristics with the basic attitude control system parameters are presented, and the most important peculiarities of such systems that were found while carrying out satellite dynamics analysis are discussed. The results of system parameters optimization with certain criteria are also given where possible. The results presented may be applied at the preliminary design phase of satellite development.  相似文献   

11.
The Space Shuttle Orbiter will be used as an orbital base for near-term space operations. Its payloads will range from compact satellites to large, flexible antennas. This paper addresses the problem of the dynamics and control of the Orbiter with a flexible payload. Two different cases are presented as examples. The first is a long, slender beam which might be used as an element in a large orbiting structure. The second is a compact satellite mounted on a spin table in the Orbiter payload bay. The closed loop limit cycles are determined for the first payload and the open loop eigenvalues are calculated for the second. Models of both payloads are mechanized in a simulation with the Shuttle on-orbit autopilot. The vehicle is put through a series of representative maneuvers and its behavior analyzed. The degree of interaction for each payload is determined and strategies are discussed for its reduction.  相似文献   

12.
This paper proposes an approach that makes use of two different techniques to sense and identify both the rigid attitude motion and the flexible dynamics of a manipulator. With the first technique, an accurate attitude motion determination, based on the use of a global navigation satellite systems (GNSS) signals, is performed. For this purpose, some antennas are placed on the manipulator in order to obtain the observable phase of the GNSS signal. The second technique, based on the use of accelerometer sensors, is used in order to identify the dynamic signature during the motion of the flexible link. Specifically, the modal parameters are estimated using data recorded from accelerometers, conveniently placed on the structure, by means of an output-only based approach. The developed algorithms used for both the attitude estimation and the output-only modal analysis are validated by experimental activities carried out on an in-house testbed representing a two flexible arm manipulator.  相似文献   

13.
Underactuated attitude control is supposed to be used on spacecraft when failure happens with onboard actuators. One main problem with existing underactuated attitude control designs is their limited capabilities against disturbances. In order to solve this problem, an approach based on the theory of H∞H is proposed in this paper. Two propositions are derived from the H∞H theory to improve the robustness of one popular underactuated attitude control design, which was presented by Tsiotras et al. It is proved mathematically that the controller satisfying these two propositions respectively can stabilize the underactuated attitude system locally or globally. The numerical simulations show that the improved controllers based on the H∞H theory could provide higher pointing accuracy for small satellites against disturbances. This validates the effectiveness of the proposed H∞H based approach to improve existing underactuated attitude control designs.  相似文献   

14.
Space vehicles are often characterized by highly flexible appendages, with low natural frequencies which can generate coupling phenomena during orbital maneuvering. The stability and delay margins of the controlled system are deeply affected by the presence of bodies with different elastic properties, assembled to form a complex multibody system. As a consequence, unstable behavior can arise. In this paper the problem is first faced from a numerical point of view, developing accurate multibody mathematical models, as well as relevant navigation and control algorithms. One of the main causes of instability is identified with the unavoidable presence of time delays in the GNC loop. A strategy to compensate for these delays is elaborated and tested using the simulation tool, and finally validated by means of a free floating platform, replicating the flexible spacecraft attitude dynamics (single axis rotation). The platform is equipped with thrusters commanded according to the on–off modulation of the Linear Quadratic Regulator (LQR) control law. The LQR is based on the estimate of the full state vector, i.e. including both rigid – attitude – and elastic variables, that is possible thanks to the on line measurement of the flexible displacements, realized by processing the images acquired by a dedicated camera. The accurate mathematical model of the system and the rigid and elastic measurements enable a prediction of the state, so that the control is evaluated taking the predicted state relevant to a delayed time into account. Both the simulations and the experimental campaign demonstrate that by compensating in this way the time delay, the instability is eliminated, and the maneuver is performed accurately.  相似文献   

15.
为构建利用柔性机械臂捕获空间碎片的系统仿真模型,首先分析梳理空间碎片捕获典型任务流程,包括轨道转移、位置保持、路径规划、动量稳定控制等阶段;然后针对任务流程分别搭建基于Simu Link的路径规划、动量缓冲控制、姿态控制、动力学和轨道仿真等子系统;各个子系统之间以TCP/IP的方式进行数据交互,最终完成空间碎片软捕获任务姿轨控仿真系统的构建。  相似文献   

16.
《Acta Astronautica》1987,15(11):823-832
The paper presents design of a near optimal orbit and attitude control system for a very large flexible rectangular flat plate-like spacecraft in geostationary orbit, with its normal kept in the orbital plane in an inertial orientation. First, assuming the plate to be rigid, an optimal control system is designed. Two control systems are needed: one to balance the gravity gradient torque and the other to control the plate's orbit and attitude against disturbances. The interaction of the structural dynamics with the control system is investigated next. It is shown that the structural dynamics destabilizes the control system. The control design is modified to reduce the interactions, by including just a couple of flexural modes into the control logic and by optimally locating the thrusters a little away from the corners. The control structure interaction which is measured by the residual flexural energy after an orbit or attitude correction, is shown to be reduced by several orders of magnitude by the simple modifications. An approach to find an optimal location of actuators and a concept of “associated modes” are also proposed to help the designer evolve a very simple coupled orbit and attitude controllers with minimum control/structure interactions for very large flexible space systems of the future. This configuration considered represents the proposed solar power satellite, solar reflectors, communication platforms, etc.  相似文献   

17.
姿控执行机构高速旋转诱发的微振动会降低柔性航天器姿态稳定度。为实现高稳指向,文章研究了姿控执行机构的集中隔振与分散隔振技术。首先建立包含隔振器的柔性航天器姿态动力学模型;然后仿真研究航天器在作大角度机动和稳定控制两种工况下,姿控执行机构的两种隔振方案的性能,并进行了对比分析。研究结果表明:航天器进行大角度机动时,对于高刚度隔振器,两种隔振均具有稳定性,并且指向控制性能相似;对于低刚度隔振器,集中隔振较分散隔振容易失稳;在稳定控制工况下,对于高刚度隔振器和低刚度隔振器,两种隔振性能基本一致。  相似文献   

18.
General dynamics of a large class of flexible satellite systems   总被引:1,自引:0,他引:1  
K.W. Lips  V.J. Modi   《Acta Astronautica》1980,7(12):1349-1360
The paper presents a general formulation for librational dynamics of satellites with an arbitrary number, type and orientation of deploying flexible appendages. In particular, the case of beam-type flexible appendages deploying from a satellite in an arbitrary orbit is considered. The governing nonlinear, nonautonomous and coupled equations for vibration of the appendages and libration of the satellite are integrated numerically. Several cases of practical importance are considered making the system progressively more general and hence complex: (i) planar case representing pitch and appendage oscillations in the orbital plane; (ii) general attitude motion with planar vibrations of flexible members; (iii) above two cases together with the out-of-plane component of vibrations. Results show that under critical combinations of the system parameters the combined effect of flexibility and deployment can be substantial.  相似文献   

19.
中轨卫星运行于地球辐射带槽区,而槽区粒子辐射环境可能存在显著涨落,增加卫星抗辐射设计输入的不确定性。文章利用典型地球辐射带模型,对中轨卫星累积性辐射效应的主要来源进行深入分析,再结合槽区粒子辐射环境动态变化特征,初步量化分析其对中轨卫星遭遇辐射效应的影响。结果表明:槽区粒子辐射环境的动态变化对星表材料及太阳电池辐射损伤的附加影响较小;槽区质子填充事件对8000 km以上高度轨道的电离总剂量有明显影响(但此类事件遭遇概率很低);槽区电子填充事件使10 000 km以上高度轨道的电离总剂量明显增大,这点必须在相应的卫星抗辐射设计要求中予以考虑。  相似文献   

20.
全动舵系统作为航天飞行器控制飞行姿态、调整飞行方向的部件,其动态特性对飞行器的正常工作起重要作用。为了开展带有电机伺服系统和舵轴间隙的全动舵系统动力学特性分析,提出基于柔性多体动力学方法的全动舵系统建模方法:采用Craig-Bampton方法建立典型舵面刚柔耦合降阶模型,采用多体动力学方法建立电动舵机连接机构与全动舵面连接,采用偶极子网格法建立基于模态的广义气动力模型。仿真结果表明,自建的模型预测颤振速度为1270 m/s,与商用软件预测对比的偏差小于2%,验证了该建模方法的正确、可行。研究表明,伺服系统的存在会令典型舵面响应存在较大跳跃现象,而舵轴间隙的存在则极大降低了舵面产生极限环振荡的临界速度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号