首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
On the basis of measurements made at Japanese magnetic stations and using GPS satellites for the 12 months of 2003, a comparison of simultaneous variations of three components of the magnetic field and total electron content (TEC) was carried out in the range of the planetary waves period. The correlation analysis has shown that almost synchronous variations exist within this range of periods at the ground-based magnetometer stations and in the TEC measurements both during strong magnetic disturbances and in quiet periods. The strong magnetic disturbances could be considered as a possible independent source of ionospheric variations within the planetary waves range, while the accompanying ionospheric storms could be a possible factor changing the conductivity of the lower ionosphere plasma. In quiet periods, the correlation of magnetic variations and disturbances in TEC is caused by the direct impact of atmospheric planetary waves on the lower ionosphere and can be related to variations of ionospheric currents due to the dynamo mechanism.  相似文献   

2.
An analysis of the electron density measurements (Ne) along the flyby trajectories over the high-latitude region of the Northern Hemisphere under winter conditions in 2014 and 2016 has shown that the main large-scale structure observed by Swarm satellites is the tongue of ionization (TOI). At the maximum of the solar cycle (F10.7 = 160), the average value of Ne in the TOI region at an altitude of 500 km was 8 × 104 cm–3. Two years later, at F10.7 = 100, Ne ~ 5 × 104 cm–3 and Ne ~2.5 × 104 cm–3 were observed at altitudes of 470 and 530 km, respectively. During the dominance of the azimuthal component of the interplanetary magnetic field, the TOI has been observed mainly on the dawn or dusk side depending on the sign of B y . Simultaneous observations of the convective plasma drift velocity in the polar cap show the transpolar flow drift to the dawn (By < 0) or dusk side (B y < 0). Observations and numerical simulation of the Ne distribution have confirmed the significant role of the electric field of the magnetospheric convection in the generation of large-scale irregularities in the polar ionosphere.  相似文献   

3.
Injections of energetic electrons with a dispersion over energies were observed during the February 23, 2004 (at about 03:20 UT) substorm onboard the Cluster satellites in the vicinity of perigee near the midnight meridian. The delays in the particle observation caused by the energy dependence of the magnetic drift velocities made it possible to determine the position and time of the beginning of the drift, tracing the trajectories of the leading center of particles back in time in the magnetospheric model. The comparisons of the measurements of four satellites allowed us to determine the radial propagation of the injection front with a velocity of 100–150 km/s at a distance of 7–9 R E. The comparison with a few previous measurements shows a substantial slowing down of injections as they approached the Earth, and this confirms the prospects of this method for more detailed study of propagation of plasma injection into the inner magnetosphere.  相似文献   

4.
New methods of choosing the structures of satellite constellations (SC) on elliptical orbits of the Molniya type are presented. The methods, using critical inclination and putting the orbit apogee in the Earth’s hemisphere with an area of continuous coverage, are based on geometrical analysis of two-dimensional representation of the coverage conditions and SC motion in the space of inertial longitude of the orbit ascending node and time. The coverage conditions are represented in the form of a certain region. Dynamics of all satellites in this space is represented by uniform motion along a straight line approximately parallel to the ordinate axis, while the satellite system forms a grid. The problem of choosing a minimal (as far as the number of satellites is concerned) SC configuration can be formulated as a search for the most sparse grid. The contemporary advanced methods of computational geometry serve as an algorithmic basis for the problem solution. Design of SC for continuous coverage of latitude belts with the use of kinematically regular systems is considered. A method of analyzing single-track systems for continuous coverage of arbitrary geographic regions is described, which makes a region at any time instant observable by at least one satellite of the system. As an example, SC on elliptical orbits are considered with periods of ~4, 12, and 24 hours.  相似文献   

5.
In the implementation of the space projects Rosetta and Mars Express, a large-scale series of experiments has been carried out on radio sounding circumsolar plasma by decimeter (S-band) and centimeter (X-band) signals of the Rosetta comet probe (from October 3 to October 31, 2010) and the Mars Express satellite of Mars (from December 25, 2010 to March 27, 2011). It was found that in the phase of ingress the spacecraft behind the Sun, the intensity of the frequency fluctuations increases in accordance with a power function whose argument is the solar offset distance of radio ray path, and when the spacecraft is removed from the Sun (the egress phase), frequency fluctuations are reduced. Periodic strong increases in the fluctuation level, exceeding by a factor of 3–12 the background values of this value determined by the regular radial dependences, are imposed on the regular dependences. It was found that increasing the fluctuations of radio waves alternates with the periodicity m × T or n × T, where m = 1/2, n = 1, аnd T is the synodic period of the Sun’s rotation (T ≈ 27 days). It was shown that the corotating structures associated with the interaction regions of different speed fluxes are formed in the area of solar wind acceleration and at distances of 6–20 solar radii already have a quasi-stationary character.  相似文献   

6.
This paper presents the results of optical observations in the active space experiment “Radar-Progress” on April 17, 2013, after switching on the approach-correction engine of the Progress M-17M cargo spacecraft at thermospheric heights (412 km), are presented in this paper. During engine operation, a region of enhanced emission intensity has been recorded. It was presumably related to the scatter of twilight solar emission at the engine exhausts in the cargo spacecraft orbit and, probably to the occurrence of an additional emission in the atomic oxygen line [OI] 630 nm. The maximum observed dimensions of the emission region were ~350 and ~250 km along the orbit and across it, respectively. The velocity of the expansion of the emission region at the first moments after the initiation of engine operation was ~7 and ~3.5 km/s along the orbit and across it, respectively. The maximum intensity of the disturbed region is estimated to be a value equivalent to ~40–60 R within the spectral band of 2 nm. No optical manifestation, which would exceed the natural variations in brightness of the night airglow and which would be related to possible large-scale modification of the ionosphere, was detected in the natural emission lines [O] 557.7 and 630.0 nm in a zone remote from the place of injection of engine exhausts.  相似文献   

7.
Using the results of coordinated experiments on the modification of the high-latitude ionosphere by powerful HF radio emission of the EISCAT/Heating facility, effects of the impact of powerful HF radio waves of the ordinary (O-mode) and extraordinary (Х-mode) polarization on the high-latitude ionospheric F region have been compared. During the experiments, a powerful HF radio wave was emitted in the magnetic zenith direction at frequencies within the 4.5–7.9 MHz range. The effective power of the emission was 150–650 MW. The behavior and characteristics of small-scale artificial ionospheric irregularities (SAIIs) during O- and X-heating at low and high frequencies are considered in detail. A principal difference has been found in the development of the Langmuir and ion–acoustic turbulence (intensified by the heating of the plasma and ion–acoustic lines in the spectrum of the EISCAT radar of incoherent scatter of radio waves) in the О- and Х-heating cycles after switching on the heating facility. It has been shown that, under the influence on the ionospheric plasma of a powerful HF radio wave of the Х-polarization, intense spectral components in the spectrum of the narrow-band artificial ionospheric radio emission (ARI) were registered at distances on the order of 1200 km from the heating facility.  相似文献   

8.
The actual controlled rotational motion of the Foton M-4 satellite is reconstructed for the mode of single-axis solar orientation. The reconstruction was carried out using data of onboard measurements of vectors of angular velocity and the strength of the Earth’s magnetic field. The reconstruction method is based on the reconstruction of the kinematic equations of the rotational motion of a solid body. According to the method, measurement data of both types collected at a certain time interval are processed together. Measurements of the angular velocity are interpolated by piecewise-linear functions, which are substituted in kinematic differential equations for a quaternion that defines the transition from the satellite instrument coordinate system to the inertial coordinate system. The obtained equations represent the kinematic model of the satellite rotational motion. A solution of these equations that approximates the actual motion is derived from the condition of the best (in the sense of the least squares method) match between the measurement data of the strength vector of the Earth’s magnetic field and its calculated values. The described method makes it possible to reconstruct the actual rotational satellite motion using one solution of kinematic equations over time intervals longer than 10 h. The found reconstructions have been used to calculate the residual microaccelerations.  相似文献   

9.
In 1964, during flights of the ELECTRON satellites the narrow belts of energetic electrons (E e ≈ 6MeV) have been discovered in the Earth’s magnetosphere at L ≈ 2.75. The same structures approximately at the same magnetic shells were found in 2004 by the CORONAS-F and SERVIS-1 satellites. A comparison of the results of these experiments is presented. It is shown that the additional narrow belts of energetic electrons occur after intense magnetic storms (D st > 100 nT), in our cases, having a double-triple structure. The lifetime of these belts is a few months and their disappearance had a gradual character. The obtained results separated in time by 40 years suggest the constancy of the sources of particles of the Earth’s radiation belts and processes occurring in the magnetosphere, which ensures not only existence of the radiation belts, but also the recurrence of various exotic phenomena in the belts similar to the belt of energetic electrons at the inner magnetic shells.  相似文献   

10.
The results of reconstruction of uncontrolled attitude motion of the Foton M-2 satellite using measurements with the accelerometer TAS-3 are presented. The attitude motion of this satellite has been previously determined by the measurement data of the Earth’s magnetic field and the angular velocity. The TAS-3 data for this purpose are used for the first time. These data contain a well-pronounced additional component which made impossible their direct employment for the reconstruction of the attitude motion and whose origin was unknown several years ago. Later it has become known that the additional component is caused by the influence of the Earth’s magnetic field. The disclosure of this fact allowed us to take into account a necessary correction in processing of TAS-3 data and to use them for the reconstruction of the attitude motion of Foton M-2. Here, a modified method of processing TAS-3 data is described, as well as results of its testing and employing. The testing consisted in the direct comparison of the motion reconstructed by the new method with the motion constructed by the magnetic measurements. The new method allowed us to find the actual motion of Foton M-2 in the period June 9, 2005–June 14, 2005, when no magnetic measurements were carried out.  相似文献   

11.
The results of reconstructing the uncontrolled rotational motion of the Aist small spacecraft prototype during its flight in early 2014 have been presented. The reconstruction was carried out by processing data from onboard measurements of the Earth’s magnetic field. The processing procedure used portions of data covering intervals of time with durations ranging from a few dozen minutes to three hours. Data obtained in each such interval were processed jointly by the least-squares method by integrating the equations of the satellite motion relative to the center of mass. The initial conditions of the motion and the parameters of the used mathematical model during processing have been estimated. The results of processing for several data intervals have provided a fairly complete picture of the satellite motion. This was the weakly disturbed Euler–Poinsot motion.  相似文献   

12.
We study the characteristics of fluxes of electrons with energy >80 keV in the near-Earth space regions corresponding to the drift shells L = 1.7, 1.4, and 1.1 observed during the entire period of the GRIF experiment onboard the Spectr module of the Mir orbital station from October 1995 to June 1997. The obtained geographic maps of the distribution of electron fluxes at the height of the station flight (400 km) and, also, the estimates of the spectra indicate that the South-Atlantic Anomaly provides for a mechanism of stable replenishment for shells with L < 1.5. The mechanism of stable replenishment of shells with L < 1.5 may be due to the scattering, in the residual atmosphere, of electrons from the inner radiation belt precipitating into the region of the South-Atlantic Anomaly.  相似文献   

13.
The RELEС scientific payload of the Vernov satellite launched on July 8, 2014 includes the DRGE spectrometer of gamma-rays and electrons. This instrument comprises a set of scintillator phoswich-detectors, including four identical X-ray and gamma-ray detector with an energy range of 10 kev to 3 MeV with a total area of ~500 cm2 directed to the atmosphere, as well as an electron spectrometer containing three mutually orthogonal detector units with a geometric factor of ~2 cm2 sr. The aim of a space experiment with the DRGE instrument is the study of fast phenomena, in particular Terrestrial gamma-ray flashes (TGF) and magnetospheric electron precipitation. In this regard, the instrument provides the transmission of both monitoring data with a time resolution of 1 s, and data in the event-by-event mode, with a recording of the time of detection of each gamma quantum or electron to an accuracy of ~15 μs. This makes it possible to not only conduct a detailed analysis of the variability in the gamma-ray range, but also compare the time profiles with the results of measurements with other RELEC instruments (the detector of optical and ultraviolet flares, radio-frequency and low-frequency analyzers of electromagnetic field parameters), as well as with the data of ground-based facility for thunderstorm activity. This paper presents the first catalog of Terrestrial gamma-ray flashes. The criterion for selecting flashes required in order to detect no less than 5 hard quanta in 1 ms by at least two independent detectors. The TGFs included in the catalog have a typical duration of ~400 μs, during which 10–40 gamma-ray quanta were detected. The time profiles, spectral parameters, and geographic position, as well as a result of a comparison with the output data of other Vernov instruments, are presented for each of candidates. The candidate for Terrestrial gamma-ray flashes detected in the near-polar region over Antarctica is discussed.  相似文献   

14.
Based on more than 4500 sessions of radio transillumination of Earth’s atmosphere along the satellite–atmosphere–satellite path obtained in the COSMIC experiment, the distribution along latitude and over local time of the spatial spectra of variations in the ionospheric phase delay and signal amplitude has been analyzed. The spatial spectra have been calculated for two height ranges, i.e., 60–80 and 80–100 km. In the phase signal spectrum within the height range 80–100 km, the second maximum in the vicinity of a frequency of 7–8 rad/km is clearly seen. Its diurnal and latitudinal behavior and its decrease towards high latitudes in both hemispheres can also be seen. In the height range of 60–80 km, this maximum is hardly observed. Although solar flares can lead to substantial local changes in the electron concentration, no substantial difference in the behavior of the spectral densities of the amplitude and phase delay at long limb paths was observed within these two height ranges on days of active and quiet sun. The latter fact makes it possible to develop a united algorithm of optimal ionospheric correction of the radio occultation data independent of solar activity.  相似文献   

15.
The results of investigation of the geomagnetic and auroral response to the commencement of a severe magnetic storm of November 20, 2003, are presented. It is established that the onset of SC led to the brightening of the auroral arc in the dusk sector for 2–3 min with its extent to the east with a velocity of 10–20 km/s and to displacement poleward with a velocity of 1.0 km/s. Furtheron, the fast auroral expansions of short duration (5 min) to the pole up to 2–4°were observed, repeating every 5–10 min during 40 min, which led to the spatial modulation of the brightness of the glow and to generation of PSC pulsations with similar periods of oscillations. The broadening of aurora poleward had a steplike character, with generation of new arcs poleward of previous ones 5 arcs per 1.5 min. The modulation of brightness of the glow and PSC were observed against the background of intensification of a two-cell DP2 type current system and were accompanied by multiple turnings of the IMF Bz from south to north and back. It is assumed that the source of PSC pulsations was a modulation of the intensity of the DP2 ionosphere currents as a result of variations of the magnetosphere convection level.Translated from Kosmicheskie Issledovaniya, Vol. 42, No. 6, 2004, pp. 608–615.Original Russian Text Copyright © 2004 by Baishev, Borisov, Velichko, Solovyev, Yumoto.  相似文献   

16.
We describe the results of determining the mass of the International Space Station using the data of MAMS accelerometer taken during correction of the station orbit on August 20, 2004. The correction was made by approach and attitude control engines (ACE) of the Progress transporting spacecraft. The engines were preliminary calibrated in an autonomous flight using the onboard device for measuring apparent velocity increment. The method of calibration is described and its results are presented. The error in station mass determination is about 1%. The same data of MAMS and similar data obtained during the orbit correction on August 26, 2004 were used for the analysis of high-frequency vibrations of the station mainframe caused by operation of the ACE of Progress. Natural frequencies of the ACE are determined. They lie in the frequency band 0.024–0.11 Hz. ACE operation is demonstrated to result in a substantial increase of microaccelerations onboard the station in the frequency range 0–1 Hz. The frequencies are indicated at which disturbances increase by more than an order of magnitude. The study described was carried out as a part of the Tensor technological experiment.  相似文献   

17.
The results of experiments with the DAKON-M convection sensor onboard the Russian orbital segment of the International Space Station are described. A comparison of the sensor measurements with the results of calculation of the quasistatic microacceleration component at the point of installation is made. For this comparison we have used three measurement intervals of the experiments in 2009, during which spacecraft were docked with the station, undocked from it, and actuation of jet engines of the attitude control system took place. When calculating microacceleration, we use the measurement data of the low-frequency MAMS accelerometer, installed on the American segment, and the telemetry data on the ISS rotational motion. This information allowed one to convert the MAMS measurements to the point of installation of the DAKON-M convection sensor. A comparison of sensor measurements with calculated microaccelerations showed sufficiently accurate coincidence between the calculated and measured data.  相似文献   

18.
The work is devoted to observations of sharp growths of magnetospheric electron fluxes in the vicinity of the polar boundary of the outer radiation belt of the Earth according to the data of measurements on the Vernov and Lomonosov satellites. This precipitation was observed at the high-latitude boundary of the outer radiation belt toward the equator from the isotropization boundary, and can be caused by scattering waves of various physical natures, including electromagnetic and electrostatic waves.  相似文献   

19.
The paper has presented a study of the dependence of the H+ ions concentration in the plasmasphere on geographic longitude. A vast database of measurements of the cold plasma density by the Alpha-3 instrument on board the INTERBALL-1 satellite has been used for the study. Based on these measurements, a dependence of the H+ ions concentration in the filled magnetic flux tube in the plasmasphere in the equatorial plane under quiet geomagnetic conditions has been obtained as a function of geographic longitude. Studies have been performed for two seasons, summer and winter. It has been shown that, during the summer in the near-midnight sector, the minimum in the H+ concentration falls within geographic longitudes of 270°–315°. The ratio of the concentration of H+ ions at various longitudes could reach a factor of three. During the winter, in the near-noon sector, the maximum of the H+ ions concentration falls within longitudes of 180°–225°, whereas the concentration ratio could reach a factor of 2.2.  相似文献   

20.
The results of five-year (1995–2000) continuous observations of the auroral radio emission (ARE) in the hectometric wavelength range on the high-apogee INTERBALL-1 satellite are presented. Short intense bursts of the auroral hectometric radio emission (AHR) were observed at frequencies of 1463 and 1501 kHz. The bursts were observed predominantly at times when the terrestrial magnetosphere was undisturbed (in the quiet Sun period), and their number decreased rapidly with increasing solar activity. The bursts demonstrated seasonal dependence in the Northern and Southern hemispheres (dominating in the autumn-winter period). Their appearance probably depends on the observation time (UT). A qualitative explanation of the AHR peculiarities is given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号