首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
三维编织碳/环氧复合材料成型工艺   总被引:3,自引:0,他引:3  
从树脂体系的选择和优化、RTM工艺以及材料内部微观结构分析等方面对三维编织碳/环氧复合材料成型工艺进行了系统的研究。结果表明,在该材料的成型技术中,以TDE-85/DDS/BF3·EMA树脂为基体,同时采用RTM工艺的成型方法是合理可行的,该材料适合用在承力情况复杂的制件上。  相似文献   

2.
RTM工艺数值模拟技术研究进展   总被引:2,自引:2,他引:2       下载免费PDF全文
阐述了几种RTM工艺树脂浸润过程的模拟模型,同时介绍了数值模拟方法和数值模拟软件用于RTM工艺研究的进展和应用情况。  相似文献   

3.
介绍了液体成型复合材料的主要类别和特点,论述了国内外液体成型树脂体系、液体成型树脂匹配的定型剂、液体成型复合材料预成型体制备工艺等技术进展。介绍了近年来液体成型复合材料发展迅速或备受关注的新工艺,如高压RTM成型工艺、热塑性树脂基液体成型工艺、自动铺放液体成型工艺、SQRTM成型工艺等。展望了液体成型复合材料未来发展趋势。  相似文献   

4.
树脂传递模塑制品的缺陷控制及流程优化   总被引:1,自引:0,他引:1  
树脂传递模塑(RTM)是一种高效的树脂基复合材料成型方法,其中RTM工艺的缺陷控制方法是目前研究的主要方向。首先介绍了RTM工艺和其传统工艺流程,然后通过试验成型RTM制品,分析制品缺陷及其产生机理,提出缺陷控制的4项原则和改进的工艺流程,最后进行论证试验。试验证实改进工艺解决了RTM制品中的气泡、滑移和干斑缺陷,对RTM工艺的研究和工业实践具有一定的指导意义。  相似文献   

5.
主要介绍了我国航天工业领域先进树脂基复合材料的原材料(增强材料和基体树脂)、成型工艺技术(热压罐工艺、RTM工艺、缠绕成型工艺、自动铺放技术)和复合材料制品的加工装配工艺技术和应用等方面的最新进展,并讨论了我国航天先进树脂基复合材料制造技术的发展趋势。  相似文献   

6.
一种基于酚醛骨架的耐高温RTM树脂   总被引:4,自引:1,他引:4       下载免费PDF全文
利用双马来酰亚胺树脂改性烯丙基化线型酚醛树脂 (BMAN)制备了可用于RTM成型的耐高温树脂。该树脂在 1 0 0℃下 8h内的粘度小于 1 5 0mPa·s ,适用于RTM成型工艺和模压工艺。且该树脂具有良好的耐高温性能 ,DMA分析表明树脂浇铸体模量曲线拐点温度Tonset在 390℃以上 ,玻璃化温度大于4 0 0℃。石英纤维 /BMAN树脂复合材料也拥有较好的耐高温性能 ,可以在 35 0℃下使用  相似文献   

7.
对一种新型RTM用双马来酰亚胺树脂R801的固化反应特性、成型工艺及其制备的复合材料性能进行了研究,DSC曲线表明该树脂体系的固化温度为170~220℃;黏度随温度变化曲线表明在70~120℃,树脂黏度增长缓慢,具有不少于7 h的适用期;在90℃左右时,其初始黏度<100 mPa.s,工艺操作窗口时间≥10 h;该树脂制备的MT300碳纤维复合材料在300℃时的压缩、弯曲、层剪性能保持率均≥63%。  相似文献   

8.
主要介绍了国内外树脂基结构复合材料及其成型工艺的发展现状,详细讨论了环氧树脂、双马来酰亚胺树脂、氰酸酯和聚酰亚胺复合材料以及模压、热压罐和RTM工艺,针对轻量化和低成本制造要求,提出了结构复合材料发展建议。  相似文献   

9.
通过拉伸和剪切试验,研究了3种不同的树脂转型模型(RTM)成型工艺(即RTM、引入缝纫的RTM和共胶接)对复合材料十字型接头力学性能的影响。根据实验现象,分析和讨论了其破坏机理。实验结果表明,3种工艺中,RTM成型的十字型接头力学性能最优,胶接和缝纫工艺都会对接头的强度产生不同程度的影响。通过有限元分析,数值模拟了RTM十字型接头的破坏过程,与实验现象吻合良好。  相似文献   

10.
分析了Z-Pin技术在复合材料RTM成型工艺中应用时需控制的关键因素,并采用Z-Pin/RTM工艺成型复合材料工字梁典型件进行工艺研究。结果表明,采用Z-Pin/RTM工艺成型后的复合材料典型件具有良好的外观和内部质量,该研究结果为早日实现Z-Pin技术在飞机结构上的应用提供了参考。  相似文献   

11.
以硝酸氧锆为锆源,尿素为凝胶促进剂,通过水热凝胶法结合超临界乙醇干燥,可成功制备出具
有良好纳米三维网络结构的ZrO2 气凝胶。采用透射电镜(TEM)、比表面积及孔隙度分析仪(BET),X 射线衍
射仪等测试手段对其结构进行了表征与测试。结果表明,ZrO2 气凝胶主要由无定型和四方晶相组成,其比表
面积为445 m2 / g,孔径主要分布在5 ~7 nm 和30 ~40 nm 两处。  相似文献   

12.
有效利用热压罐技术来实现复合材料成型的关键在于选择合适的工艺参数和制定合理的工艺
方案,虚拟热压罐工艺仿真可以有助于对固化过程进行预测,提高工艺设计效率,降低生产成本。本文介绍了
热压罐工艺仿真软件COMPRO 以及典型的固化过程分析模型(热化学模型、流动压实模型和应力变形模型)。
最后给出了影响COMPRO 数值模拟的关键参数及翼梁样件试验数据与数值模拟对比,COMPRO 可以较为准
确的预测固化工艺。  相似文献   

13.
基于装配特征的组合件快速装配技术研究   总被引:1,自引:0,他引:1       下载免费PDF全文
提出了一种新的组合件装配设计思路:通过组合件信息模型的设计和对组合件定位信息的分析,在装配组合件过程中由程序自动生成装配基体上装配特征。实现了组合件的快速装配,并成功应用在某企业的复合材料构件工装快速设计系统中。  相似文献   

14.
通过水煮发泡制备交联聚氯乙烯泡沫塑料,讨论了聚氯乙烯(PVC)糊树脂对泡沫制备过程中经制糊、模压和发泡工艺得到的产物的影响,研究了PVC糊树脂对制备的交联PVC泡沫压缩性能的影响.结果表明:制备交联聚氯乙烯泡沫塑料适宜的糊黏度是4~9 Pa·s;PVC糊树脂的K值较大或水萃取液pH值呈碱性可有效防止模压过程中PVC的降解;PVC糊树脂的水萃取液pH值呈碱性可催化发泡反应,有利于得到低密度泡沫且缩短发泡时间;随着其K值增加,制备的泡沫压缩强度增大,但是K值过大时,制备的泡沫泡孔较大,压缩强度反而降低,适宜的K值为70~80.  相似文献   

15.
某产品用2A12铝合金锻坯在生产过程中发生开裂故障。本文对开裂锻坯进行了形貌观察与断口分析,并对比研究了热处理后开裂锻坯、未热处理锻坯和原材料铝棒。结果表明:开裂锻坯上的开裂模式为脆性开裂;开裂锻坯上的裂纹形成于热处理过程,形成原因应与锻造工艺控制不当导致锻坯在热处理过程中形成的粗晶有关。  相似文献   

16.
高超声速飞行器机动飞行时环境压力变化导致隔热材料沿厚度方向存在压力梯度,进而引起隔
热材料内气体的扩散渗透,影响隔热材料隔热性能。为研究气体扩散渗透对隔热材料隔热性能的影响,建立了
隔热材料内气体扩散渗透模型,采用罗斯兰德近似、有限体积法建立了隔热材料内扩散渗透及辐射导热传热计
算模型,对气体扩散渗透条件下的瞬态隔热性能进行了数值模拟。算例模拟结果表明:对2 cm 厚纳米隔热材
料,在外界气压为0. 1 MPa,绝热面为真空的状况下,当渗透率大于10-14 m2 时,气体扩散渗透开始影响隔热材
料内传热,导致隔热性能降低,气体黏性系数对气体扩散渗透有显著影响,随着黏性系数降低,气体扩散渗流现
象显著;衰减系数对绝热面温度响应有显著影响,随着衰减系数增大,绝热面温度响应显著降低。  相似文献   

17.
大厚度铝合金矩形机箱在拼焊生产过程中,存在组装难度大,焊缝质量不易保证,焊后变形大等问题.针对铝合金矩形机箱焊后马鞍型和螺旋型变形特点,选用表面定位方式,设计了多种类型的夹板,完成了箱体焊接工装的设计.在此基础上,采用真空电子束焊,通过严格的工艺措施完成了机箱的拼焊,获得了深宽比符合要求的焊缝,保证了机箱结构的完整性.经检测,矩形机箱满足设计要求.实践证明,此工装和工艺方案可行,对类似构件的制造有指导意义.  相似文献   

18.
通过调整催化剂三乙烯二胺溶液和二月桂酸二丁基锡的用量进行浇注试验.结果表明,室温浇注泡沫塑料的性能(密度、压缩强度、闭孔率、拉伸强度、热导率、等效热导率、线胀系数)与低温浇注泡沫塑料的性能相当,实现了聚氨酯泡沫塑料的室温浇注.  相似文献   

19.
CF3052/5284RTM 复合材料湿热性能   总被引:2,自引:0,他引:2       下载免费PDF全文
通过对CF3052/5284RTM复合材料进行试验研究,测定其在不同湿热条件下的基本力学性能,分析湿热条件对基本力学性能的影响。结果表明:湿热环境对该复合材料力学性能的影响程度不一,其中湿度的作用较温度更加明显;该复合材料在高温湿态条件下保持了较高的拉伸和纵横剪切强度,具有综合力学性能好、耐湿热性能好等优点。  相似文献   

20.
采用等离子体浸没离子注人(PⅢ)技术对9Cr18轴承钢表面进行了双注入及共注入Ti+N工艺处理.测试了处理前后试样的显微硬度及真空摩擦因数,并表征分析了表面磨损形貌.结果表明:处理后试样的显微硬度都有大幅提高,最大增幅达68.7%;表面真空摩擦因数由0.15下降到0.08;磨斑尺寸及粗糙度分别减少了54.4%和37.4%.双注入与共注入方式在相同参数下,双注入处理后的试样表面综合性能更加优异.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号