首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Long-range surveillance radars use MTI techniques to detect moving targets in a clutter background. The transmitter PRF is usually staggered to eliminate the blind speeds due to aliasing of the target and clutter spectra. A spectral analysis of the target and clutter signals is performed for the case of nonuniform sampling, and it is shown that the clutter spectral density continues to fold over at the basic PRF, but the signal spectrum becomes dispersed in frequency, which means that an MTI rader will never be completely blind to moving targets.  相似文献   

2.
The effect of transmitting timing jitter and sampling jitter on a multipulse clutter cancellation system is analyzed, and explicit expressions are obtained for the net increase in the residue clutter power due to timing jitter. The increase in mean-square error is found to be proportional to the jitter variance, with the two jitters contributing almost equally. The system analyzed can have either a recursive or nonrecursive MTI filter, and the latter includes the familiar two- and three-pulse canceller as special cases. The increase in residue clutter power for a three-pulse canceller is about 4.8 dB worse than that for a two-pulse canceller  相似文献   

3.
Spatially distributed target detection in non-Gaussian clutter   总被引:3,自引:0,他引:3  
Two detection schemes for the detection of a spatially distributed, Doppler-shifted target in non-Gaussian clutter are developed. The non-Gaussian clutter is modeled as a spherically invariant random vector (SIRV) distribution. For the first detector, called the non-scatterer density dependent generalized likelihood ratio test (NSDD-GLRT), the detector takes the form of a sum of logarithms of identical functions of data from each individual range cell. It is shown under the clutter only hypothesis, that the detection statistic has the chi-square distribution so that the detector threshold is easily calculated for a given probability of false alarm PF. The detection probability PD is shown to be only a function of the signal-to-clutter power ratio (S/C)opt of the matched filter, the number of pulses N, the number of target range resolution cells J, the spikiness of the clutter determined by a parameter of an assumed underlying mixing distribution, and PF. For representative examples, it is shown that as N, J, or the clutter spikiness increases, detection performance improves. A second detector is developed which incorporates a priori knowledge of the spatial scatterer density. This detector is called the scatterer density dependent GLRT (SDD-GLRT) and is shown for a representative case to improve significantly the detection performance of a sparsely distributed target relative to the performance of the NSDD-GLRT and to be robust for a moderate mismatch of the expected number of scatterers. For both the NSDD-GLRT and SDD-GLRT, the detectors have the constant false-alarm rate (CFAR) property that PF is independent of the underlying mixing distribution of the clutter, the clutter covariance matrix, and the steering vector of the desired signal  相似文献   

4.
近年来,全球风力发电装机容量呈指数增长。研究表明,风轮机对其附近的航管(ATC)监视雷达会产生严重影响。风轮机杂波的有效检测及抑制,对于保证空中交通安全具有重要意义。首先提出了基于回波谱宽特征的航管监视雷达的风轮机杂波检测方法。针对扫描模式下航管监视雷达频谱分辨率较低的问题,将基于自回归(AR)模型的超分辨率方法和质量中心的概念应用于雷达回波的快速谱宽和谱中心估计算法中,提高谱宽估计的精度。其次针对扫描模式下的风轮机回波数据不是一个完整周期数据的问题,基于缺省数据幅度和相位估计(GAPES)算法实现了扫描模式下风轮机雷达回波缺省数据的估计,而后利用风轮机杂波的周期性抑制风轮机杂波。该算法实现了风轮机杂波的有效检测和抑制,并且其不受限于风轮机与飞机目标在同一个距离单元的情况。仿真结果验证了所提方法的有效性。  相似文献   

5.
Probability density expressions associated with the noncoherent detection of a sinusoidal signal have been obtained. The signal is assumed to be imbedded in sinusoidal clutter at the same frequency and narrow-band Gaussian noise. The density expressions are shown to be a function of the signal-to-noise power ratio and the clutter-to-noise power ratio. The expressions have been numerically evaluated for a number of conditions, and the results under each reception hypothesis are presented graphically. Under large-sample conditions, the probability density for a multisample test statistic is shown to be Gaussian, and the probability of detection expression is written such that commonly available tabulated data can be utilized to determine the probabilities.  相似文献   

6.
The spectral properties of two-dimensional isotropic clutter signals are examined for the cases in which 1) the clutter has an exponential spatial autocorrelation function, and 2) the clutter is a two-dimensional Gauss-Markov random signal. The one- and twodimensional power spectral densities before and after antenna filtering are obtained, and some of the differences and similarities between these two models are discussed in the context of spectral analysis.  相似文献   

7.
Generalized radar clutter model   总被引:2,自引:0,他引:2  
A commonly used density model for radar clutter is chi-square for power, or, equivalently, Rayleigh for amplitude. However, for many modern high resolution radar systems, this density underestimates the tails of the measured clutter density. Log normal and Weibull distributions have proved to be better suited for the clutter in these high resolution radars. Generalizing the chi-square density by replacing it with the noncentral chi-square density and allowing the mean power level (the noncentrality parameter) to vary, we can both suitably shape the clutter density to produce larger tails and model the fluctuation of the average clutter power, commonly referred to as speckle. The resulting form, although appearing cumbersome, readily allows for efficient and accurate computations of the probability of detection in clutter  相似文献   

8.
Airborne/spacebased radar STAP using a structured covariance matrix   总被引:5,自引:0,他引:5  
It is shown that partial information about the airborne/spacebased (A/S) clutter covariance matrix (CCM) can be used effectively to significantly enhance the convergence performance of a block-processed space/time adaptive processor (STAP) in a clutter and jamming environment. The partial knowledge of the CCM is based upon the simplified general clutter model (GCM) which has been developed by the airborne radar community. A priori knowledge of parameters which should be readily measurable (but not necessarily accurate) by the radar platform associated with this model is assumed. The GCM generates an assumed CCM. The assumed CCM along with exact knowledge of the thermal noise covariance matrix is used to form a maximum likelihood estimate (MLE) of the unknown interference covariance matrix which is used by the STAP. The new algorithm that employs the a priori clutter and thermal noise covariance information is evaluated using two clutter models: 1) a mismatched GCM, and 2) the high-fidelity Research Laboratory STAP clutter model. For both clutter models, the new algorithm performed significantly better (i.e., converged faster) than the sample matrix inversion (SMI) and fast maximum likelihood (FML) STAP algorithms, the latter of which uses only information about the thermal noise covariance matrix.  相似文献   

9.
Approximate expressions are derived for the video clutter spectra in the receiver of a low pulse repetition frequency (PRF), airborne moving target indicator (AMTI), pulse-Doppler radar for both step-scanning and continuous-scanning antennas. The receiver is assumed to process the received waveform with a clutter-tracking oscillator and a window function is employed to obtain short-term spectra. Except for the broadening effects of the window function, it is shown that the clutter spectrum can be simply related to the antenna voltage-gain pattern. It is further shown, in the scanning antenna case, that the combined spectral broadening due to platform motion and antenna scanning cannot be assumed to be the result of the convolution of the separate effects unless the antenna gain pattern has a Gaussian shape. The approximate clutter expressions are illustrated by examples and are shown to agree well with the results of computer calculations.  相似文献   

10.
Clutter echoes with unknown power spectra (from weather, sea, chaff disturbances) can be suppressed only adaptively. The use of the discrete Fourier transform (DFT) for clutter suppression in step scan radars is investigated by use of a clutter model that is derived in analogy to measured clutter data of a radar with a rotating antenna.  相似文献   

11.
In automatic detection in radar systems an estimate of background clutter power is used to set the detection threshold. Usually detection cells surrounding the cell under test for the presence of a target are used to estimate the clutter power. In the research reported herein, the target location is taken to be uncertain and thus returns from a target could corrupt this clutter power estimate. It is shown how the threshold should be varied to compensate for the resulting degradation in detection performance. The threshold control procedure is based on a priori information about target location that could be supplied by the radar's tracking system. In addition, a simple procedure for calculating detection and false alarm probabilities for Swerling II target models is presented.  相似文献   

12.
Manoeuvring target tracking in clutter using particle filters   总被引:2,自引:0,他引:2  
A particle filter (PF) is a recursive numerical technique which uses random sampling to approximate the optimal solution to target tracking problems involving nonlinearities and/or non-Gaussianity. A set of particle filtering methods for tracking and manoeuvering target in clutter from angle-only measurements is presented and evaluated. The aim is to compare PFs to a well-established tracking algorithm, the IMM-PDA-EKF (interacting multiple model, probabilistic data association, extended Kalman filter), and to provide an insight into which aspects of PF design are of most importance under given conditions. Monte Carlo simulations show that the use of a resampling scheme which produces particles with distinct values offers significant improvements under almost all conditions. Interestingly, under all conditions considered here,using this resampling scheme with blind particle proposals is shown to be superior, in the sense of providing improved performance for a fixed computational expense, to measurement-directed particle proposals with the same resampling scheme. This occurs even under conditions favourable to the use of measurement-directed proposals. The IMM-PDA-EKF performs poorly compared with the PFs for large clutter densities but is more effective when the measurements are precise.  相似文献   

13.
Detection of small objects in clutter using a GA-RBF neural network   总被引:5,自引:0,他引:5  
Detection of small objects in a radar or satellite image is an important problem with many applications. Due to a recent discovery that sea clutter, the electromagnetic wave backscatter from a sea surface, is chaotic rather than purely random, computational intelligence techniques such as neural networks have been applied to reconstruct the chaotic dynamic of sea clutter. The reconstructed sea clutter dynamical system which usually takes the form of a nonlinear predictor does not only provide a model of the sea scattering phenomenon, but it can also be used to detect the existence of small targets such as fishing boats and small fragments of icebergs by observing abrupt changes in the prediction error. We applied a genetic algorithm (GA) to obtain an optimal reconstruction of sea clutter dynamic based on a radial basis function (RBF) neural network. This GA-RBF uses a hybrid approach that employes a GA to search for the optimum values of the following RBF parameters: centers, variance, and number of hidden nodes, and uses the least square method to determine the weights. It is shown here that if the functional form of an unknown nonlinear dynamical system can be represented exactly using an RBF net (i.e., no approximation error), this GA-RBF approach can reconstruct the exact dynamic from its time series measurements. In addition to the improved accuracy in modeling sea clutter dynamic, the GA-RBF is also shown to enhance the detectability of small objects embedded in the sea. Using real-life radar data that are collected in the east coast of Canada by two different radar systems: a ground-based radar and a satellite equipped with synthetic aperture radar (SAR), we show that the GA-RBF network is a reliable detector for small surface targets in various sea conditions and is practical for real-life search and rescue, navigation, and surveillance applications  相似文献   

14.
HRR Detector for Slow-Moving Targets in Sea Clutter   总被引:1,自引:0,他引:1  
The radar detection of targets in the presence of sea clutter has historically relied upon the radial velocity of targets with respect to the radar platform either by exploiting the relative target Dopplers (for targets with sufficient radial velocity) or by discerning the paths targets traverse from scan to scan. For targets with little to no radial velocity component, though, it can become quite difficult to differentiate targets from the surrounding sea clutter. This paper addresses the detection of slow-moving targets in sea clutter using a high resolution radar (HRR) such that the target has perceptible extent in range. Under the assumption of completely random sea clutter spikes based on an epsiv-contaminated mixture model with the signal and clutter powers known, optimal detection performance results from using the likelihood ratio test (LRT). However, for realistic sea clutter, the clutter spikes tend to be a localized phenomenon. Based upon observations from real radar data measurements, a heuristic approach exploiting a salient aspect of the idealized LRT is developed which is shown to perform well when applied to real measured sea clutter.  相似文献   

15.
Application of Three-Dimensional Filtering to Moving Target Detection   总被引:3,自引:0,他引:3  
The standard approach to the detection of a stationary target immersed within an optically observed scene is to use integration to separate the target energy from the background clutter. When the target is nonstationary and moves with fixed velocity relative to the clutter, the procedure for integrating the target signal is no longer obvious. In this paper it is shown that the problem of tracking a target having a fixed velocity can be cast into a general framework of three-dimensional filter theory. From this point of view, the target detection problem reduces to the problem of finding optimal three-dimensional filters in the three-dimensional transform domain and processing the observed scene via this filtering. The design of these filters is presented, taking into account the target, clutter, and optical detection models. Performance is computed for a basic clutter model, showing the effective increase in detectability as a function of the target velocity. The three-dimensional transform approach is readily compatible with VLSI array processing technology.  相似文献   

16.
A means of optimizing a moving target indicator (MTI) filter for rejecting several types of clutter, which are generated by different mechanisms such as by rain or the ground, is formulated. lt is found that the optimal performance of such a filter depends on the spectral density functions, average radar cross sections, and the relative mean Doppler frequencies of each type of clutter. lt is shown that the optimal improvement factor of such a filter is bounded by the weighted average (weighted in accordance with the radar cross sections of the clutter types) of the improvement factor for the individual clutter type. lt is also shown that the improvement factor of such a filter is a function of the relative mean Doppler frequency f0 between the clutter types. As f0 increases, the performance of the MTI system degrades. The worst improvement factor occurs when f0 is equal to half of the radar pulse-repetition frequency (PRF).  相似文献   

17.
The effect of the clutter-to-noise ratio on the performance of a Doppler filter is considered. Clutter is assumed to have a power level which is unknown and varies in range. The assessment of the performance of a Doppler filter is based on the gain of the filter, which is the normalized output signal-to-interference ratio improvement at a given Doppler. The gain is generally a complex function of the statistics of the clutter. New upper and lower bounds on the gain differential between the expected design point clutter-to-noise ratio and the actual clutter-to-noise ratio are found. These bounds are independent of the clutter covariance matrix and are only a function of the unknown clutter-to-noise ratio. The bounds are valid for both Gaussian and non-Gaussian noise and for arbitrary linear filters. The upper and lower bounds differ by the theoretical coherent integration gain, 10 logN dB, where N is the number of pulses. A tighter lower bound is found for the case when the filters are matched filters. A simple exact expression is found for matched filters assuming a Gaussian Markov clutter model as the clutter spectral width approaches zero. An easily implementable adaptive procedure is given which improves performance due to the unknown clutter-to-noise ratio. This work extends a previous result, valid for the Emerson filter, that shows the effect of clutter-to-noise ratio on performance in terms of an average quantity, the improvement factor  相似文献   

18.
建立了雷达模拟器中目标、地物杂波、海杂波、气象杂波的信号强度计算模型,根据相对运动关系解算出各目标与杂波信号的强度,并按时间流程存储在对应的数据表中,从而信号源将产生相应强度的信号注入雷达模拟台,以便后端雷达模拟台能在雷达威力覆盖范围内准确地显示出目标与杂波强度变化。通过仿真软件在雷达训练模拟器中的功能测试,实现了目标与杂波仿真效果,满足了雷达模拟训练的要求。  相似文献   

19.
A CFAR Design for a Window Spanning Two Clutter Fields   总被引:1,自引:0,他引:1  
When the heterogeneous clutter field spanning the spatial sampling sliding window can be modeled as two contiguous homogeneous clutter fields with the statistical parameters of each field unknown and independent from field to field and with the transition point between fields also not known, then the cell-averaging constant false alarm rate (CFAR) performance significantly degrades, yielding target masking effects and loss of false alarm regulation. For the same defined and encountered environment spanning the sliding window, the performance degradation effects are shown to be largely eliminated when a newly developed class of CFAR tests is employed. These tests are designated as heterogeneous clutter estimating CFARs (HCE-CFAR). The test initially involves the combined use of multiple hypothesis testing and maximum likelihood estimation procedures to estimate the statistical parameters of each of the two fields, and the transition point between them, and then makes use of the relevant estimated clutter field parameters to effect the final decision rule. HCE-CFAR designs are presented for both the cases when the contiguous fields have Rayleigh first-order probability distributions, and log-normal probability distribution. However, the focus of the development and the conducted performance evaluation is for the Rayleigh clutter cases.  相似文献   

20.
The problem of detecting coherent pulse trains with uniform amplitude in a clutter-plus-noise environment is considered. A radar processor for detecting targets moving radially with respect to the clutter is proposed. The minimum interpulse spacing of the transmitted signal is assumed long enough that returns are not received simultaneously from different ranges within a region of extended clutter, and the central frequency of the clutter power spectrum is postulated to be known. The processor is singled out as the linear filter, orthogonal to the clutter central frequency component, which yields the maximum ratio of peak signal power to average noise power. The filter can be implemented by slightly modifying the structure of the conventional matched filter. The performance of such a filter is compared with that achievable if full a priori knowledge of the input interference were available and with that of the conventional matched filter. This comparison is made on a signal-to-interference power ratio basis after assuming a transmitted signal consisting of equally spaced pulses and an interference characterized by an exponential covariance matrix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号